66 research outputs found

    Technical elements for minimising of vibration effects in special vehicles

    Get PDF
    The paper presents chosen solutions and technical elements for minimising of vibration effects in special vehicles. Due to volume and scope of the impact, forces and load generated in special vehicle during operating these elements are extremely important for isolation and absorbing of vibration affecting human or load. As the example of such solutions frame, suspension of car-body and cabin adopt in high mobility wheeled platform were described

    The effect of damage to the fuel injector on changes of the vibroactivity of the diesel engine during its starting

    Get PDF
    Damage to fuel system components of combustion engines significantly contributes to the deterioration of their operation dynamics, accelerates their wear and worsens the emission of toxic components of exhaust fumes. Measurements and calculations of the level of vibration and noise of a diesel engine with a damaged common rail system injector were conducted as part of the study. The impact of damage to the fuel system injector on the change in the vibroactivity of the engine during its starting was evaluated based on the calculations carried out. Time and frequency distributions of signals of vibration and noise were also calculated in order to evaluate the impact of the injection system damage on the frequency structure of vibroacoustic signals emitted by the engine

    Assessment of diagnostic usefulness of vibration of the common rail system in the diesel engine

    Get PDF
    The paper presents an assessment of diagnostic usefulness of the vibration measurements and analysis of selected components of the common rail system in the diesel engine. Measurements were performed of the selected components of the CR system and changes were determined in the time and frequency structure of the recorded vibration signals. The research has shown that vibration recorded on the injector's housing and the rail of the common rail system is useful diagnostic information for the evaluation of the technical condition of the fuel supply system of a compression ignition engine

    Predictive maintenance of induction motors using ultra-low power wireless sensors and compressed recurrent neural networks

    Get PDF
    In real-world applications - to minimize the impact of failures - machinery is often monitored by various sensors. Their role comes down to acquiring data and sending it to a more powerful entity, such as an embedded computer or cloud server. There have been attempts to reduce the computational effort related to data processing in order to use edge computing for predictive maintenance. The aim of this paper is to push the boundaries even further by proposing a novel architecture, in which processing is moved to the sensors themselves thanks to decrease of computational complexity given by the usage of compressed recurrent neural networks. A sensor processes data locally, and then wirelessly sends only a single packet with the probability that the machine is working incorrectly. We show that local processing of the data on ultra-low power wireless sensors gives comparable outcomes in terms of accuracy but much better results in terms of energy consumption that transferring of the raw data. The proposed ultra-low power hardware and firmware architecture makes it possible to use sensors powered by harvested energy while maintaining high confidentiality levels of the failure prediction previously offered by more powerful mains-powered computational platforms

    The strategy of fusion genes construction determines efficient expression of introduced transcription factors

    Get PDF
    The main goal in gene therapy and biomedical research is an efficient transcription factors (TFs) delivery system. SNAIL, a zinc finger transcription factor, is strongly involved in tumor, what makes its signaling pathways an interesting research subject. The necessity of tracking activation of intracellular pathways has prompted fluorescent proteins usage as localization markers. Advanced molecular cloning techniques allow to generate fusion proteins from fluorescent markers and transcription factors. Depending on fusion strategy, the protein expression levels and nuclear transport ability are significantly different. The P2A self-cleavage motif through its cleavage ability allows two single proteins to be simultaneously expressed. The aim of this study was to compare two strategies for introducing a pair of genes using expression vector system. We have examined GFP and SNAI1 gene fusions by comprising common nucleotide polylinker (multiple cloning site) or P2A motif in between them, resulting in one fusion or two independent protein expressions respectively. In each case transgene expression levels and translation efficiency as well as nuclear localization of expressed protein have been analyzed. Our data showed that usage of P2A motif provides more effective nuclear transport of SNAIL transcription factor than conventional genes linker. At the same time the fluorescent marker spreads evenly in subcellular space

    Physiological aspects of sex differences and Haldane’s rule in Rumex hastatulus

    Get PDF
    Haldane’s rule (HR, impairment of fertility and/or viability of interracial hybrids) seems to be one of few generalizations in evolutionary biology. The validity of HR has been confirmed in animals, and more recently in some dioecious plants (Silene and Rumex). Dioecious Rumex hastatulus has two races differing in the sex chromosome system: Texas (T) and North Carolina (NC), and T × NC males showed both reduced pollen fertility and rarity—two classical symptoms of Haldane’s rule (HR). The reduced fertility of these plants has a simple mechanistic explanation, but the reason for their rarity was not elucidated. Here, we measured selected physiological parameters related to the antioxidant defense system in parental races and reciprocal hybrids of R. hastatulus. We showed that the X-autosome configurations, as well as asymmetries associated with Y chromosomes and cytoplasm, could modulate this system in hybrids. The levels and quantitative patterns of the measured parameters distinguish the T × NC hybrid from the other analyzed forms. Our observations suggest that the rarity of T × NC males is caused postzygotically and most likely related to the higher level of oxidative stress induced by the chromosomal incompatibilities. It is the first report on the physiological aspects of HR in plants

    Software controlled low cost thermoelectric energy harvester for ultra-low power wireless sensor nodes

    Get PDF
    General hardware architecture of an energy-harvested wireless sensor network node (EH-WSN) can be divided into power, sensing, computing and communication subsystems. Interrelation between these subsystems in combination with constrained energy supply makes design and implementation of EH-WSN a complex and challenging task. Separation of these subsystems into distinct hardware modules simplifies the design process and makes the architecture and software more generic, leading to more flexible solutions. From the other hand, tightly coupling these subsystems gives more room for optimizations at the price of increased complexity of the hardware and software. Additional engineering effort could be justified by a smaller, cheaper hardware, and more energy-efficient a wireless sensor node. The aim of this paper is to push further technical and economical boundaries related to EH-WSN by proposing a novel architecture which – by tightly coupling software and hardware of power, computing, and communication subsystems – allows the wireless sensor node to be powered by a thermoelectric generator working with about 1.5°C temperature difference while keeping the cost of all electronic components used to build such a node below 9 EUR (in volume)

    Numerical identification of the overhead travelling crane’s dynamic factor caused by lifting the load off the ground

    Get PDF
    Overhead travelling cranes work with intermittent motion, and therefore are most exposed to dynamic loads. In steel constructions, as a result of load pick up from the ground, vibrations of various degrees of intensity are induced, which should be included in crane design. These loads affect both the hoisting mechanisms and load-carrying structures. The aim of this study is the formulation of a phenomenological model of an overhead travelling crane enabling the identification of dynamic factors caused by lifting the load off the ground. The object of the study was 107 overhead travelling cranes with lifting capacities from 5 to 50 tones, designed in the Centre for Research and Development of Cranes and Transport Equipment “Detrans” in Bytom and produced in Poland in the period 1970-2005. Cranes were classified according to the stiffness classes proposed in European standards for crane safety. In this paper, computer simulations are carried out on the basis of a phenomenological model with four degrees of freedom, three of them corresponding to the crane’s structure and one to the hoisted load. The model also allows assumption of the variable stiffness and damping of the steel rope during its shortening. The values of the dynamic factors refer to the various design and dynamic parameters of overhead travelling cranes, formulating appropriate conclusions

    Numerical identification of the overhead travelling crane’s dynamic factor caused by lifting the load off the ground

    Get PDF
    Overhead travelling cranes work with intermittent motion, and therefore are most exposed to dynamic loads. In steel constructions, as a result of load pick up from the ground, vibrations of various degrees of intensity are induced, which should be included in crane design. These loads affect both the hoisting mechanisms and load-carrying structures. The aim of this study is the formulation of a phenomenological model of an overhead travelling crane enabling the identification of dynamic factors caused by lifting the load off the ground. The object of the study was 107 overhead travelling cranes with lifting capacities from 5 to 50 tones, designed in the Centre for Research and Development of Cranes and Transport Equipment “Detrans” in Bytom and produced in Poland in the period 1970-2005. Cranes were classified according to the stiffness classes proposed in European standards for crane safety. In this paper, computer simulations are carried out on the basis of a phenomenological model with four degrees of freedom, three of them corresponding to the crane’s structure and one to the hoisted load. The model also allows assumption of the variable stiffness and damping of the steel rope during its shortening. The values of the dynamic factors refer to the various design and dynamic parameters of overhead travelling cranes, formulating appropriate conclusions

    CHARACTERIZATION OF BIOFILMS FROM SELECTED SYNTHETIC MATERIALS USED IN WATER DISTRIBUTION SYSTEM

    Full text link
    Materials like polyvinyl chloride (PVC), polypropylene (PP), ultra high molecular weight polyethylene (UHMW-PE) are used for the construction of drinking water supply systems. It was found that regardless of the type of material the distribution network is built of, microorganisms formed biofilms on every available surface. The pipes material plays a key role in terms of biofilm formation. Important factors are the surface roughness, adhesives, plasticizers, stabilizers, which can be a source of nutrients for bacteria. The metabolic activity of microorganisms on polymer materials, induces migration of compounds from the material into water. The aim of this study was to present the differences in the structure and the metabolic profile of biofilm formed on the technical materials
    corecore