21 research outputs found
Wildlife Trade and Human Health in Lao PDR: An Assessment of the Zoonotic Disease Risk in Markets.
Although the majority of emerging infectious diseases can be linked to wildlife sources, most pathogen spillover events to people could likely be avoided if transmission was better understood and practices adjusted to mitigate risk. Wildlife trade can facilitate zoonotic disease transmission and represents a threat to human health and economies in Asia, highlighted by the 2003 SARS coronavirus outbreak, where a Chinese wildlife market facilitated pathogen transmission. Additionally, wildlife trade poses a serious threat to biodiversity. Therefore, the combined impacts of Asian wildlife trade, sometimes termed bush meat trade, on public health and biodiversity need assessing. From 2010 to 2013, observational data were collected in Lao PDR from markets selling wildlife, including information on volume, form, species and price of wildlife; market biosafety and visitor origin. The potential for traded wildlife to host zoonotic diseases that pose a serious threat to human health was then evaluated at seven markets identified as having high volumes of trade. At the seven markets, during 21 observational surveys, 1,937 alive or fresh dead mammals (approximately 1,009 kg) were observed for sale, including mammals from 12 taxonomic families previously documented to be capable of hosting 36 zoonotic pathogens. In these seven markets, the combination of high wildlife volumes, high risk taxa for zoonoses and poor biosafety increases the potential for pathogen presence and transmission. To examine the potential conservation impact of trade in markets, we assessed the status of 33,752 animals observed during 375 visits to 93 markets, under the Lao PDR Wildlife and Aquatic Law. We observed 6,452 animals listed by Lao PDR as near extinct or threatened with extinction. The combined risks of wildlife trade in Lao PDR to human health and biodiversity highlight the need for a multi-sector approach to effectively protect public health, economic interests and biodiversity
Perception of health risks in Lao market vendors
Wet markets are a critical part of South-East Asian culture and economy. However, their role in circulation and transmission of both endemic and emerging disease is a source of concern in a region considered a hotspot of disease emergence. In the Lao People's Democratic Republic (Lao PDR, Laos), live and dead wild animals are frequently found in wet markets, despite legislation against the bushmeat trade. This is generally considered to increase the risk of disease transmission and emergence, although whether or not wildlife vendors themselves have indeed increased incidence of zoonotic disease has rarely been assessed. In preparation for a future longitudinal study of market vendors investigating vendors’ exposure to zoonotic pathogens, we conducted a pilot survey of Lao market vendors of wildlife meat, livestock meat and vegetables, to identify demographic characteristics and potential control groups within markets. We also investigated baseline risk perception for infectious diseases among market vendors and assessed the association between risk perception and risk mitigation behaviours. The surveys conducted with 177 vendors revealed similar age, sex, ethnic background and geographical origin between vendor types, but differences in professional background and work history for livestock meat vendors. The perception of disease risk was very low across all vendors, as was the reported use of personal protective equipment, and the two appeared unrelated. Personal risk discounting and assumptions about transmission routes may explain this lack of association. This information will help inform the development of future research, risk communication and risk mitigation policy, especially in the light of the COVID-19 pandemic
Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats
In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security
Detection of African swine fever virus in free-ranging wild boar in Southeast Asia
African Swine Fever (ASF) is a highly contagious and fatal viral disease affecting both domestic and wild suids. The virus was introduced to Southeast Asia in early 2019 and has since spread rapidly throughout the region. Although significant efforts have been made to track and diagnose the disease in domestic pigs, very little is known about ASF in free-ranging wild boar and their potential role in maintaining the disease within Southeast Asia. Through a collaboration between government and non-government actors in Laos, Viet Nam, and Cambodia, investigations were conducted to (a) characterize the interface between domestic pigs and wild boar, (b) document risk factors for likely ASF spillover into wild boar populations by way of this interface, and (c) determine whether ASF in wild boar could be detected in each country. An extensive overlap between wild boar habitat and domestic pig ranging areas was found around villages bordering forests in all three countries, creating a high-risk interface for viral spillover between domestic pig and wild boar populations. Fifteen and three wild boar carcasses were detected through passive reporting in Laos and Viet Nam, respectively, in 2019 and early 2020. Four of five carcasses screened in Laos and two of three in Viet Nam were confirmed positive for African swine fever virus using real-time PCR. There were no confirmed reports of wild boar carcasses in Cambodia. This is the first confirmation of ASF in wild boar in Southeast Asia, the result of a probable viral spillover from domestic pigs, which highlights the importance of early reporting and monitoring of ASF in wild boar to enable the implementation of appropriate biosecurity measures
Perception of health risks in Lao market vendors
Wet markets are a critical part of South-East Asian culture and economy. However, their role in circulation and transmission of both endemic and emerging disease is a source of concern in a region considered a hotspot of disease emergence. In the Lao People's Democratic Republic (Lao PDR, Laos), live and dead wild animals are frequently found in wet markets, despite legislation against the bushmeat trade. This is generally considered to increase the risk of disease transmission and emergence, although whether or not wildlife vendors themselves have indeed increased incidence of zoonotic disease has rarely been assessed. In preparation for a future longitudinal study of market vendors investigating vendors’ exposure to zoonotic pathogens, we conducted a pilot survey of Lao market vendors of wildlife meat, livestock meat and vegetables, to identify demographic characteristics and potential control groups within markets. We also investigated baseline risk perception for infectious diseases among market vendors and assessed the association between risk perception and risk mitigation behaviours. The surveys conducted with 177 vendors revealed similar age, sex, ethnic background and geographical origin between vendor types, but differences in professional background and work history for livestock meat vendors. The perception of disease risk was very low across all vendors, as was the reported use of personal protective equipment, and the two appeared unrelated. Personal risk discounting and assumptions about transmission routes may explain this lack of association. This information will help inform the development of future research, risk communication and risk mitigation policy, especially in the light of the COVID-19 pandemic
Wildlife Trade and Human Health in Lao PDR: An Assessment of the Zoonotic Disease Risk in Markets.
Although the majority of emerging infectious diseases can be linked to wildlife sources, most pathogen spillover events to people could likely be avoided if transmission was better understood and practices adjusted to mitigate risk. Wildlife trade can facilitate zoonotic disease transmission and represents a threat to human health and economies in Asia, highlighted by the 2003 SARS coronavirus outbreak, where a Chinese wildlife market facilitated pathogen transmission. Additionally, wildlife trade poses a serious threat to biodiversity. Therefore, the combined impacts of Asian wildlife trade, sometimes termed bush meat trade, on public health and biodiversity need assessing. From 2010 to 2013, observational data were collected in Lao PDR from markets selling wildlife, including information on volume, form, species and price of wildlife; market biosafety and visitor origin. The potential for traded wildlife to host zoonotic diseases that pose a serious threat to human health was then evaluated at seven markets identified as having high volumes of trade. At the seven markets, during 21 observational surveys, 1,937 alive or fresh dead mammals (approximately 1,009 kg) were observed for sale, including mammals from 12 taxonomic families previously documented to be capable of hosting 36 zoonotic pathogens. In these seven markets, the combination of high wildlife volumes, high risk taxa for zoonoses and poor biosafety increases the potential for pathogen presence and transmission. To examine the potential conservation impact of trade in markets, we assessed the status of 33,752 animals observed during 375 visits to 93 markets, under the Lao PDR Wildlife and Aquatic Law. We observed 6,452 animals listed by Lao PDR as near extinct or threatened with extinction. The combined risks of wildlife trade in Lao PDR to human health and biodiversity highlight the need for a multi-sector approach to effectively protect public health, economic interests and biodiversity
Data from: Diversity of bat astroviruses in Lao PDR and Cambodia
Astroviruses are known to infect humans and a wide range of animal species, and can cause gastroenteritis in their hosts. Recent studies have reported astroviruses in bats in Europe and in several locations in China. We sampled 1876 bats from 17 genera at 45 sites from 14 and 13 provinces in Cambodia and Lao PDR respectively, and tested them for astroviruses. Our study revealed a high diversity of astroviruses among various Yangochiroptera and Yinpterochiroptera bats. Evidence for varying degrees of host restriction for astroviruses in bats was found. Furthermore, additional Pteropodid hosts were detected. The astroviruses formed distinct phylogenetic clusters within the genus Mamastrovirus, most closely related to other known bat astroviruses. The astrovirus sequences were found to be highly saturated indicating that phylogenetic relationships should be interpreted carefully. An astrovirus clustering in a group with other viruses from diverse hosts, including from ungulates and porcupines, was found in a Rousettus bat. These findings suggest that diverse astroviruses can be found in many species of mammals, including bats
P1 Laos bats Coronavirus Data_2019Aug16_1656
Data associated with bats sampled in Lao PDR and tested for Coronaviruse
Data from: Genetic diversity of coronaviruses in bats in Lao PDR and Cambodia
South-East Asia is a hot spot for emerging zoonotic diseases, and bats have been recognized as hosts for a large number of zoonotic viruses such as Severe Acute Respiratory Syndrome (SARS), responsible for acute respiratory syndrome outbreaks. Thus, it is important to expand our knowledge of the presence of viruses in bats which could represent a risk to humans. Coronaviruses (CoVs) have been reported in bat species from Thailand, China, Indonesia, Taiwan and the Philippines. However no such work was conducted in Cambodia or Lao PDR. Between 2010 and 2013, 1965 bats were therefore sampled at interfaces with human populations in these two countries. They were tested for the presence of coronavirus by consensus reverse transcription-PCR assay. A total of 93 samples (4.7%) from 17 genera of bats tested positive. Sequence analysis revealed the presence of potentially 37 and 56 coronavirus belonging to alpha-coronavirus (αCoV) and beta-CoV (βCoV), respectively. The βCoVs group is known to include some coronaviruses highly pathogenic to human, such as SARS-CoV and MERS-CoV. All coronavirus sequences generated from frugivorous bats (family Pteropodidae) (n=55) clustered with other bat βCoVs of lineage D, whereas one coronavirus from Pipistrellus coromandra fell in the lineage C of βCoVs which also includes the MERS-CoV. αCoVs were all detected in various genera of insectivorous bats and clustered with diverse bat αCoV sequences previously published. A closely related strain of PEDV, responsible for severe diarrhea in pigs (PEDV-CoV), was detected in 2 Myotis bats. We highlighted the presence and the high diversity of coronaviruses circulating in bats from Cambodia and Lao PDR. Three new bat genera and species were newly identified as host of coronaviruses, namely Macroglossus sp., Megaerops niphanae and Myotis horsfieldii
P1 Cambodia bats Coronavirus data_2019Aug16_1658
Data associated with bats sampled in Cambodia and tested for Coronaviruse