2 research outputs found

    Condensate formation in a dark state of a driven atom-cavity system

    Full text link
    We demonstrate condensate formation in a dark state in an ultracold quantum gas coupled to a high-finesse cavity and pumped by a shaken optical lattice. We show experimentally and theoretically that the atoms in the dark state display a strong suppression of the coupling to the cavity. On the theory side, this is supported by solving the dynamics of a minimal three-level model and of the full atom-cavity system. The symmetry of the condensate wave function is anti-symmetric with respect to the potential minima of the pump lattice, and displays a staggered sign along the cavity direction. This symmetry decouples the dark state from the cavity, and is preserved when the pump intensity is switched off
    corecore