28,796 research outputs found
Electric Dipole Moments in the Generic Supersymmetric Standard Model
The generic supersymmetric standard model is a model built from a
supersymmetrized standard model field spectrum the gauge symmetries only. The
popular minimal supersymmetric standard model differs from the generic version
in having R-parity imposed by hand. We review an efficient formulation of the
model and some of the recently obtained interesting phenomenological features,
focusing on one-loop contributions to fermion electric dipole moments.Comment: 1+7 pages Revtex 3 figures incoporated; talk at NANP'0
In an Attempt to Introduce Long-range Interactions into Small-world Networks
Distinguishing the long-range bonds with the regular ones, the critical
temperature of the spin-lattice Guassian model built on two typical Small-world
Networks (SWNs) is studied. The results show much difference from the classical
case, and thus may induce some more accurate discussion on the critical
properties of the spin-lattice systems combined with the SWNs.Comment: 4 pages, 3 figures, 18 referenc
On the afterglow from the receding jet of gamma-ray burst
According to popular progenitor models of gamma-ray bursts, twin jets should
be launched by the central engine, with a forward jet moving toward the
observer and a receding jet (or the counter jet) moving backwardly. However, in
calculating the afterglows, usually only the emission from the forward jet is
considered. Here we present a detailed numerical study on the afterglow from
the receding jet. Our calculation is based on a generic dynamical description,
and includes some delicate ingredients such as the effect of the equal arrival
time surface. It is found that the emission from the receding jet is generally
rather weak. In radio bands, it usually peaks at a time of d,
with the peak flux nearly 4 orders of magnitude lower than the peak flux of the
forward jet. Also, it usually manifests as a short plateau in the total
afterglow light curve, but not as an obvious rebrightening as once expected. In
optical bands, the contribution from the receding jet is even weaker, with the
peak flux being orders of magnitude lower than the peak flux of the
forward jet. We thus argue that the emission from the receding jet is very
difficult to detect. However, in some special cases, i.e., when the
circum-burst medium density is very high, or if the parameters of the receding
jet is quite different from those of the forward jet, the emission from the
receding jet can be significantly enhanced and may still emerge as a marked
rebrightening. We suggest that the search for receding jet emission should
mostly concentrate on nearby gamma-ray bursts, and the observation campaign
should last for at least several hundred days for each event.Comment: A few citations added, together with a few minor revisions, main
conclusions unchanged, accepted for publication in A&A, 7 figures, 10 Page
Phase diagrams of XXZ model on depleted square lattice
Using quantum Monte Carlo (QMC) simulations and a mean field (MF) theory, we
investigate the spin-1/2 XXZ model with nearest neighbor interactions on a
periodic depleted square lattice. In particular, we present results for 1/4
depleted lattice in an applied magnetic field and investigate the effect of
depletion on the ground state. The ground state phase diagram is found to
include an antiferromagnetic (AF) phase of magnetization and an
in-plane ferromagnetic (FM) phase with finite spin stiffness. The agreement
between the QMC simulations and the mean field theory based on resonating
trimers suggests the AF phase and in-plane FM phase can be interpreted as a
Mott insulator and superfluid of trimer states respectively. While the thermal
transitions of the in-plane FM phase are well described by the
Kosterlitz-Thouless transition, the quantum phase transition from the AF phase
to in-plane FM phase undergo a direct second order insulator-superfluid
transition upon increasing magnetic field.Comment: 7 pages, 8 figures. Revised version, accepted by PRB
- …