26,201 research outputs found

    The Discovery of Quasisoft and Supersoft Sources in External Galaxies

    Full text link
    We apply a uniform procedure to select very soft sources from point sources observed by Chandra in 4 galaxies. This sample includes one elliptical galaxy (NGC 4967), 2 face-on spirals (M101 and M83), and an interacting galaxy (M51). We have found very soft X-ray sources (VSSs) in every galaxy. Some of these fit the criteria for canonical supersoft sources (SSSs), while others are somewhat harder. These latter have characteristic values of kT < 300 eV; we refer to them as quasisoft sources (QSSs). We found a combined total of 149 VSSs in the 4 galaxies we considered; 77 were SSSs and 72 were QSSs. (See the paper for the original long abstract)Comment: 20 pages, 6 figures. Accepted for publication in Ap

    Time-Periodic Solutions of the Einstein's Field Equations II

    Full text link
    In this paper, we construct several kinds of new time-periodic solutions of the vacuum Einstein's field equations whose Riemann curvature tensors vanish, keep finite or take the infinity at some points in these space-times, respectively. The singularities of these new time-periodic solutions are investigated and some new physical phenomena are found. The applications of these solutions in modern cosmology and general relativity can be expected.Comment: 10 pages, 1 figur

    Semiconducting-to-metallic photoconductivity crossover and temperature-dependent Drude weight in graphene

    Get PDF
    We investigated the transient photoconductivity of graphene at various gate-tuned carrier densities by optical-pump terahertz-probe spectroscopy. We demonstrated that graphene exhibits semiconducting positive photoconductivity near zero carrier density, which crosses over to metallic negative photoconductivity at high carrier density. Our observations are accounted for by considering the interplay between photo-induced changes of both the Drude weight and the carrier scattering rate. Notably, we observed multiple sign changes in the temporal photoconductivity dynamics at low carrier density. This behavior reflects the non-monotonic temperature dependence of the Drude weight, a unique property of massless Dirac fermions

    Domain-mediated interactions for protein subfamily identification

    Get PDF
    Within a protein family, proteins with the same domain often exhibit different cellular functions, despite the shared evolutionary history and molecular function of the domain. We hypothesized that domain-mediated interactions (DMIs) may categorize a protein family into subfamilies because the diversified functions of a single domain often depend on interacting partners of domains. Here we systematically identified DMI subfamilies, in which proteins share domains with DMI partners, as well as with various functional and physical interaction networks in individual species. In humans, DMI subfamily members are associated with similar diseases, including cancers, and are frequently co-associated with the same diseases. DMI information relates to the functional and evolutionary subdivisions of human kinases. In yeast, DMI subfamilies contain proteins with similar phenotypic outcomes from specific chemical treatments. Therefore, the systematic investigation here provides insights into the diverse functions of subfamilies derived from a protein family with a link-centric approach and suggests a useful resource for annotating the functions and phenotypic outcomes of proteins.11Ysciescopu

    Discovery of {\gamma}-ray pulsation and X-ray emission from the black widow pulsar PSR J2051-0827

    Full text link
    We report the discovery of pulsed {\gamma}-ray emission and X-ray emission from the black widow millisecond pulsar PSR J2051-0827 by using the data from the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope and the Advanced CCD Imaging Spectrometer array (ACIS-S) on the Chandra X-ray Observatory. Using 3 years of LAT data, PSR J2051-0827 is clearly detected in {\gamma}-ray with a signicance of \sim 8{\sigma} in the 0.2 - 20 GeV band. The 200 MeV - 20 GeV {\gamma}-ray spectrum of PSR J2051-0827 can be modeled by a simple power- law with a photon index of 2.46 \pm 0.15. Significant (\sim 5{\sigma}) {\gamma}-ray pulsations at the radio period were detected. PSR J2051-0827 was also detected in soft (0.3-7 keV) X-ray with Chandra. By comparing the observed {\gamma}-rays and X-rays with theoretical models, we suggest that the {\gamma}-ray emission is from the outer gap while the X-rays can be from intra-binary shock and pulsar magnetospheric synchrotron emissions.Comment: 10 pages, 4 figures, accepted by ApJ on Jan 28, 201

    A NuSTAR Observation of the Gamma-ray Emitting Millisecond Pulsar PSR J1723-2837

    Get PDF
    We report on the first NuSTAR observation of the gamma-ray emitting millisecond pulsar binary PSR J1723-2837. X-ray radiation up to 79 keV is clearly detected and the simultaneous NuSTAR and Swift spectrum is well described by an absorbed power-law with a photon index of ~1.3. We also find X-ray modulations in the 3-10 keV, 10-20 keV, 20-79 keV, and 3-79 keV bands at the 14.8-hr binary orbital period. All these are entirely consistent with previous X-ray observations below 10 keV. This new hard X-ray observation of PSR J1723-2837 provides strong evidence that the X-rays are from the intrabinary shock via an interaction between the pulsar wind and the outflow from the companion star. We discuss how the NuSTAR observation constrains the physical parameters of the intrabinary shock model.Comment: Accepted for publication in ApJ. 5 pages, 3 figure
    corecore