23,131 research outputs found
A NuSTAR Observation of the Gamma-ray Emitting Millisecond Pulsar PSR J1723-2837
We report on the first NuSTAR observation of the gamma-ray emitting
millisecond pulsar binary PSR J1723-2837. X-ray radiation up to 79 keV is
clearly detected and the simultaneous NuSTAR and Swift spectrum is well
described by an absorbed power-law with a photon index of ~1.3. We also find
X-ray modulations in the 3-10 keV, 10-20 keV, 20-79 keV, and 3-79 keV bands at
the 14.8-hr binary orbital period. All these are entirely consistent with
previous X-ray observations below 10 keV. This new hard X-ray observation of
PSR J1723-2837 provides strong evidence that the X-rays are from the
intrabinary shock via an interaction between the pulsar wind and the outflow
from the companion star. We discuss how the NuSTAR observation constrains the
physical parameters of the intrabinary shock model.Comment: Accepted for publication in ApJ. 5 pages, 3 figure
Simultaneous X-ray/optical observations of GX 9+9 (4U 1728-16)
We report on the results of the first simultaneous X-ray (RXTE) and optical
(SAAO) observations of the luminous low mass X-ray binary (LMXB) GX 9+9 in 1999
August. The high-speed optical photometry revealed an orbital period of 4.1958
hr and confirmed previous observations, but with greater precision. No X-ray
modulation was found at the orbital period. On shorter timescales, a possible
1.4-hr variability was found in the optical light curves which might be related
to the mHz quasi-periodic oscillations seen in other LMXBs. We do not find any
significant X-ray/optical correlation in the light curves. In X-rays, the
colour-colour diagram and hardness-intensity diagram indicate that the source
shows characteristics of an atoll source in the upper banana state, with a
correlation between intensity and spectral hardness. Time-resolved X-ray
spectroscopy suggests that two-component spectral models give a reasonable fit
to the X-ray emission. Such models consist of a blackbody component which can
be interpreted as the emission from an optically thick accretion disc or an
optically thick boundary layer, and a hard Comptonized component for an
extended corona.Comment: 19 pages, 13 figures; accepted for publication in MNRA
A rapid staining-assisted wood sampling method for PCR-based detection of pine wood nematode Bursaphelenchus xylophilus in Pinus massoniana wood tissue
For reasons of unequal distribution of more than one nematode species in wood, and limited
availability of wood samples required for the PCR-based method for detecting pinewood nematodes in
wood tissue of Pinus massoniana, a rapid staining-assisted wood sampling method aiding PCR-based
detection of the pine wood nematode Bursaphelenchus xylophilus (Bx) in small wood samples of P.
massoniana was developed in this study. This comprised a series of new techniques: sampling, mass
estimations of nematodes using staining techniques, and lowest limit Bx nematode mass determination
for PCR detection. The procedure was undertaken on three adjoining 5-mg wood cross-sections, of
0.5 · 0.5 · 0.015 cm dimension, that were cut from a wood sample of 0.5 · 0.5 · 0.5 cm initially, then
the larger wood sample was stained by acid fuchsin, from which two 5-mg wood cross-sections (that
adjoined the three 5-mg wood cross-sections, mentioned above) were cut. Nematode-staining-spots
(NSSs) in each of the two stained sections were counted under a microscope at 100· magnification. If
there were eight or more NSSs present, the adjoining three sections were used for PCR assays. The
B. xylophilus – specific amplicon of 403 bp (DQ855275) was generated by PCR assay from 100.00% of
5-mg wood cross-sections that contained more than eight Bx NSSs by the PCR assay. The entire
sampling procedure took only 10 min indicating that it is suitable for the fast estimation of nematode
numbers in the wood of P. massonina as the prelimary sample selections for other more expensive
Bx-detection methods such as PCR assay
The Discovery of an X-ray/UV Stellar Flare from the Late-K/Early-M Dwarf LMC 335
We report the discovery of an X-ray/UV stellar flare from the source LMC 335,
captured by XMM-Newton in the field of the Large Magellanic Cloud. The flare
event was recorded continuously in X-ray for its first 10 hours from the
precursor to the late decay phases. The observed fluxes increased by more than
two orders of magnitude at its peak in X-ray and at least one in the UV as
compared to quiescence. The peak 0.1-7.0 keV X-ray flux is derived from the
two-temperature APEC model to be ~(8.4 +/- 0.6) x 10^-12 erg cm-2 s-1.
Combining astrometric information from multiple X-ray observations in the
quiescent and flare states, we identify the NIR counterpart of LMC 335 as the
2MASS source J05414534-6921512. The NIR color relations and spectroscopic
parallax characterize the source as a Galactic K7-M4 dwarf at a foreground
distance of (100 - 264) pc, implying a total energy output of the entire event
of ~(0.4 - 2.9) x 10^35 erg. This report comprises detailed analyses of this
late-K / early-M dwarf flare event that has the longest time coverage yet
reported in the literature. The flare decay can be modeled with two exponential
components with timescales of ~28 min and ~4 hours, with a single component
decay firmly ruled out. The X-ray spectra during flare can be described by two
components, a dominant high temperature component of ~40-60MK and a low
temperature component of ~10MK, with a flare loop length of about 1.1-1.3
stellar radius.Comment: 35 pages, 6 figures, 5 tables, accepted for publication in Ap
- …