65 research outputs found

    Determining Optimal Traffic Opening Time Through Concrete Strength Monitoring: Wireless Sensing

    Get PDF
    Construction and concrete production are time-sensitive and fast-paced; as such, it is crucial to monitor the in-place strength development of concrete structures in real-time. Existing concrete strength testing methods, such as the traditional hydraulic compression method specified by ASTM C 39 and the maturity method specified by ASTM C 1074, are labor-intensive, time consuming, and difficult to implement in the field. INDOT’s previous research (SPR-4210) on the electromechanical impedance (EMI) technique has established its feasibility for monitoring in-situ concrete strength to determine the optimal traffic opening time. However, limitations of the data acquisition and communication systems have significantly hindered the technology’s adoption for practical applications. Furthermore, the packaging of piezoelectric sensor needs to be improved to enable robust performance and better signal quality. In this project, a wireless concrete sensor with a data transmission system was developed. It was comprised of an innovated EMI sensor and miniaturized datalogger with both wireless transmission and USB module. A cloud-based platform for data storage and computation was established, which provides the real time data visualization access to general users and data access to machine learning and data mining developers. Furthermore, field implementations were performed to prove the functionality of the innovated EMI sensor and wireless sensing system for real-time and in-place concrete strength monitoring. This project will benefit the DOTs in areas like construction, operation, and maintenance scheduling and asset management by delivering applicable concrete strength monitoring solutions

    Dynamical quantum phase transitions in a spinor Bose-Einstein condensate and criticality enhanced quantum sensing

    Full text link
    Quantum phase transitions universally exist in the ground and excited states of quantum many-body systems, and they have a close relationship with the nonequilibrium dynamical phase transitions, which however are challenging to identify. In the system of spin-1 Bose-Einstein condensates, though dynamical phase transitions with correspondence to equilibrium phase transitions in the ground state and uppermost excited state have been probed, those taken place in intermediate excited states remain untouched in experiments thus far. Here we unravel that both the ground and excited-state quantum phase transitions in spinor condensates can be diagnosed with dynamical phase transitions. A connection between equilibrium phase transitions and nonequilibrium behaviors of the system is disclosed in terms of the quantum Fisher information. We also demonstrate that near the critical points parameter estimation beyond standard quantum limit can be implemented. This work not only advances the exploration of excited-state quantum phase transitions via a scheme that can immediately be applied to a broad class of few-mode quantum systems, but also provides new perspective on the relationship between quantum criticality and quantum enhanced sensing

    B-LSTM-MIONet: Bayesian LSTM-based Neural Operators for Learning the Response of Complex Dynamical Systems to Length-Variant Multiple Input Functions

    Full text link
    Deep Operator Network (DeepONet) is a neural network framework for learning nonlinear operators such as those from ordinary differential equations (ODEs) describing complex systems. Multiple-input deep neural operators (MIONet) extended DeepONet to allow multiple input functions in different Banach spaces. MIONet offers flexibility in training dataset grid spacing, without constraints on output location. However, it requires offline inputs and cannot handle varying sequence lengths in testing datasets, limiting its real-time application in dynamic complex systems. This work redesigns MIONet, integrating Long Short Term Memory (LSTM) to learn neural operators from time-dependent data. This approach overcomes data discretization constraints and harnesses LSTM's capability with variable-length, real-time data. Factors affecting learning performance, like algorithm extrapolation ability are presented. The framework is enhanced with uncertainty quantification through a novel Bayesian method, sampling from MIONet parameter distributions. Consequently, we develop the B-LSTM-MIONet, incorporating LSTM's temporal strengths with Bayesian robustness, resulting in a more precise and reliable model for noisy datasets

    Determining Optimal Traffic Opening Time Through Concrete Strength Monitoring: Wireless Sensing

    Get PDF
    SPR-4513Construction and concrete production are time-sensitive and fast-paced; as such, it is crucial to monitor the in-place strength development of concrete structures in real-time. Existing concrete strength testing methods, such as the traditional hydraulic compression method specified by ASTM C 39 and the maturity method specified by ASTM C 1074, are labor-intensive, time consuming, and difficult to implement in the field. INDOT\u2019s previous research (SPR-4210) on the electromechanical impedance (EMI) technique has established its feasibility for monitoring in-situ concrete strength to determine the optimal traffic opening time. However, limitations of the data acquisition and communication systems have significantly hindered the technology\u2019s adoption for practical applications. Furthermore, the packaging of piezoelectric sensor needs to be improved to enable robust performance and better signal quality

    Comparative efficacy of different renin angiotensin system blockade therapies in patients with IgA nephropathy: a Bayesian network meta-analysis of 17 RCTs

    Get PDF
    Background IgA nephropathy (IgAN) is still one of the most prevalent forms of primary glomerulonephritis globally. However, no guidelines have clearly indicated which kinds of renin angiotensin system blockade therapies (ACEIs or ARBs or their combination) in patients with IgAN result in a greater reduction in proteinuria and a better preservation of kidney function. Thus, we conducted a Bayesian network analysis to evaluate the relative effects of these three therapy regimens in patients with IgAN. Methods The protocol was registered in PROSPERO with ID CRD42017073726. We comprehensively searched the PubMed, the Cochrane Library, Embase, China Biology Medicine disc, WanFang and CNKI databases for studies published since 1993 as well as some grey literature according to PICOS strategies. Pairwise meta-analysis and Bayesian network analysis were conducted to evaluate the effect of different regimens. Results Seventeen randomized controlled trials (RCTs) involving 1,006 patients were analyzed. Co-administration of ACEIs and ARBs had the highest probability (92%) of being the most effective therapy for reducing proteinuria and blood pressure, but ACEIs would be the most appropriate choice for protecting kidney function in IgAN. Conclusion The combination of ACEIs and ARBs seems to have a significantly better antiproteinuric effect and a greater reduction of blood pressure than ACEI or ARB monotherapy in IgAN. ACEIs appear to be a more renoprotective therapy regimen among three therapies

    A new approach to overcoming antibiotic-resistant bacteria: Traditional Chinese medicine therapy based on the gut microbiota

    Get PDF
    With the irrational use of antibiotics and the increasing abuse of oral antibiotics, the drug resistance of gastrointestinal pathogens has become a prominent problem in clinical practice. Gut microbiota plays an important role in maintaining human health, and the change of microbiota also affects the activity of pathogenic bacteria. Interfering with antibiotic resistant bacteria by affecting gut microbiota has also become an important regulatory signal. In clinical application, due to the unique advantages of traditional Chinese medicine in sterilization and drug resistance, it is possible for traditional Chinese medicine to improve the gut microbial microenvironment. This review discusses the strategies of traditional Chinese medicine for the treatment of drug-resistant bacterial infections by changing the gut microenvironment, unlocking the interaction between microbiota and drug resistance of pathogenic bacteria

    Learned Smartphone ISP on Mobile GPUs with Deep Learning, Mobile AI & AIM 2022 Challenge: Report

    Full text link
    The role of mobile cameras increased dramatically over the past few years, leading to more and more research in automatic image quality enhancement and RAW photo processing. In this Mobile AI challenge, the target was to develop an efficient end-to-end AI-based image signal processing (ISP) pipeline replacing the standard mobile ISPs that can run on modern smartphone GPUs using TensorFlow Lite. The participants were provided with a large-scale Fujifilm UltraISP dataset consisting of thousands of paired photos captured with a normal mobile camera sensor and a professional 102MP medium-format FujiFilm GFX100 camera. The runtime of the resulting models was evaluated on the Snapdragon's 8 Gen 1 GPU that provides excellent acceleration results for the majority of common deep learning ops. The proposed solutions are compatible with all recent mobile GPUs, being able to process Full HD photos in less than 20-50 milliseconds while achieving high fidelity results. A detailed description of all models developed in this challenge is provided in this paper

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    • …
    corecore