94 research outputs found

    Respiratory syncytial virus infection in Fischer 344 rats is attenuated by short interfering RNA against the RSV-NS1 gene

    Get PDF
    BACKGROUND: Respiratory syncytial virus (RSV) causes severe bronchiolitis and is a risk factor for asthma. Since there is no commercially available vaccine against RSV, a short interfering RNA against the RSV-NS1gene (siNS1) was developed and its potential for decreasing RSV infection and infection-associated inflammation in rats was tested. METHODS: Plasmids encoding siNS1 or an unrelated siRNA were complexed with a chitosan nanoparticle delivery agent and administered intranasally. Control animals received a plasmid for a non-specific siRNA. After expression of the plasmid in lung cells for 24 hours, the rats were intranasally infected with RSV. RESULTS: Prophylaxis with siNS1 significantly reduced lung RSV titers and airway hyperreactivity to methacholine challenge compared to the control group. Lung sections from siNS1-treated rats showed a sizable reduction in goblet cell hyperplasia and in lung infiltration by inflammatory cells, both characteristics of asthma. Also, bronchoalveolar lavage samples from siNS1-treated animals had fewer eosinophils. Treatment of rats with siNS1 prior to RSV exposure was effective in reducing virus titers in the lung and in preventing the inflammation and airway hyperresponsiveness associated with the infection that has been linked to development of asthma. CONCLUSION: The use of siNS1 prophylaxis may be an effective method for preventing RSV bronchiolitis and potentially reducing the later development of asthma associated with severe respiratory infections

    Chitosan IFN-γ-pDNA Nanoparticle (CIN) Therapy for Allergic Asthma

    Get PDF
    BACKGROUND: Allergic subjects produce relatively low amounts of IFN-γ, a pleiotropic Th-1 cytokine that downregulates Th2-associated airway inflammation and hyperresponsiveness (AHR), the hallmarks of allergic asthma. Adenovirus-mediated IFN-γ gene transfer reduces AHR, Th2 cytokine levels and lung inflammation in mice, but its use would be limited by the frequency of gene delivery required; therefore, we tested chitosan/IFN-γ pDNA nanoparticles (CIN) for in situ production of IFN-γ and its in vivo effects. METHODS: CIN were administered to OVA-sensitized mice to investigate the possibility of using gene transfer to modulate ovalbumin (OVA)-induced inflammation and AHR. RESULTS: Mice treated with CIN exhibit significantly lower AHR to methacholine challenge and less lung histopathology. Production of IFN-γ is increased after CIN treatment while the Th2-cytokines, IL-4 and IL-5, and OVA-specific serum IgE are reduced compared to control mice. AHR and eosinophilia are also significantly reduced by CIN therapy administered therapeutically in mice with established asthma. CIN was found to inhibit epithelial inflammation within 6 hours of delivery by inducing apoptosis of goblet cells. Experiments performed on STAT4-defective mice do not show reduction in AHR with CIN treatment, thus implicating STAT4 signaling in the mechanism of CIN action. CONCLUSION: These results demonstrate that mucosal CIN therapy can effectively reduce established allergen-induced airway inflammation and AHR

    Genome-Wide Identification, Evolutionary Expansion, and Expression Profile of Homeodomain-Leucine Zipper Gene Family in Poplar (Populus trichocarpa)

    Get PDF
    BACKGROUND: Homeodomain-leucine zipper (HD-ZIP) proteins are plant-specific transcriptional factors known to play crucial roles in plant development. Although sequence phylogeny analysis of Populus HD-ZIPs was carried out in a previous study, no systematic analysis incorporating genome organization, gene structure, and expression compendium has been conducted in model tree species Populus thus far. PRINCIPAL FINDINGS: In this study, a comprehensive analysis of Populus HD-ZIP gene family was performed. Sixty-three full-length HD-ZIP genes were found in Populus genome. These Populus HD-ZIP genes were phylogenetically clustered into four distinct subfamilies (HD-ZIP I-IV) and predominately distributed across 17 linkage groups (LG). Fifty genes from 25 Populus paralogous pairs were located in the duplicated blocks of Populus genome and then preferentially retained during the sequential evolutionary courses. Genomic organization analyses indicated that purifying selection has played a pivotal role in the retention and maintenance of Populus HD-ZIP gene family. Microarray analysis has shown that 21 Populus paralogous pairs have been differentially expressed across different tissues and under various stresses, with five paralogous pairs showing nearly identical expression patterns, 13 paralogous pairs being partially redundant and three paralogous pairs diversifying significantly. Quantitative real-time RT-PCR (qRT-PCR) analysis performed on 16 selected Populus HD-ZIP genes in different tissues and under both drought and salinity stresses confirms their tissue-specific and stress-inducible expression patterns. CONCLUSIONS: Genomic organizations indicated that segmental duplications contributed significantly to the expansion of Populus HD-ZIP gene family. Exon/intron organization and conserved motif composition of Populus HD-ZIPs are highly conservative in the same subfamily, suggesting the members in the same subfamilies may also have conservative functionalities. Microarray and qRT-PCR analyses showed that 89% (56 out of 63) of Populus HD-ZIPs were duplicate genes that might have been retained by substantial subfunctionalization. Taken together, these observations may lay the foundation for future functional analysis of Populus HD-ZIP genes to unravel their biological roles

    Driver’s Lane Selection Model Based on Phase-Field Coupling and Multiplayer Dynamic Game with Incomplete Information

    Get PDF
    Intelligent driving is an effective means to achieve the active safety of automobile, and the accurate prediction of vehicle group situation is the premise to achieve the intelligent driving of vehicle. Lane selection and lane changing are not only the most fundamental reasons for the transformation of vehicle group situation, but also the basic contents for the research on driver behavior of traffic flow theory. In this paper, with a view to the background of Internet of Things, the vehicle group situation was given a comprehensive consideration on the basis of the factors which influence driver’s behavior. The driver’s lane selection behavior was analyzed under the condition of incomplete information, and lane selection model based on phase-field coupling and multiplayer dynamic game with incomplete information was constructed considering the time-varying character of driving propensity. The means of actual driving experiment, virtual driving experiment, and microscopic simulation of traffic flow were used to verify the model. The verification results showed that the model built in this paper can objectively reflect the actual operation characteristic of traffic flow on road section and the process of lane selection. The theoretical basis of the research on lane selection can be provided for intelligent driving especially anthropomorphic driving under the condition of Internet of Things. Document type: Articl

    Chitosan Interferon-γ Nanogene Therapy for Lung Disease: Modulation of T-Cell and Dendritic Cell Immune Responses

    Get PDF
    <p/> <p>The use of chitosan nanoparticles as carriers for expression plasmids represents a major improvement in gene expression technology. We demonstrated previously that treatment with chitosan interferon-γ (IFN-γ) plasmid deoxyribonucleic acid (DNA) nanoparticles (chitosan interferon-γ nanogene [CIN]) led to in situ production of IFN-γ and a reduction in inflammation and airway reactivity in mice, but the mechanism underlying the immunomodulatory effects of CIN remains unclear. In this report, the effect of CIN treatment on the immune responses of CD8<sup>+ </sup>T cells and dendritic cells was examined in a BALB/c mouse model of ovalbumin (OVA)-induced allergic asthma. OT1 mice (OVA-T cell receptor [TCR] transgenic) were also used to test the effects of CIN on OVA-specific CD8<sup>+ </sup>T cells. CIN treatment caused a reduction in IFN-γ production in a subpopulation of OVA-specific CD8<sup>+ </sup>T cells cultured in vitro in the presence of OVA. CIN also reduced apoptosis of the CD8<sup>+ </sup>T cells. Examination of dendritic cells from lung and lymph nodes indicated that CIN treatment decreased their antigen-presenting activity, as evident from the reduction in CD80 and CD86 expression. Furthermore, CIN treatment significantly decreased the number of CD11c<sup>+</sup>b<sup>+ </sup>dendritic cells in lymph nodes, suggesting that endogenous IFN-γ expression may immunomodulate dendritic cell migration and activation. CIN therapy results in a reduction in proinflammatory CD8<sup>+ </sup>T cells and decreases the number and antigen-presenting activity of dendritic cells.</p

    An immunocompromised BALB/c mouse model for respiratory syncytial virus infection

    Get PDF
    BACKGROUND: Respiratory syncytial virus (RSV) infection causes bronchiolitis in infants and children, which can be fatal, especially in immunocompromised patients. The BALB/c mouse, currently used as a model for studying RSV immunopathology, is semi-permissive to the virus. A mouse model that more closely mimics human RSV infection is needed. Since immunocompromised conditions increase risk of RSV infection, the possibility of enhancing RSV infection in the BALB/c mouse by pretreatment with cyclophosphamide was examined in this study. BALB/c mice were treated with cyclophosphamide (CYP) and five days later, they were infected with RSV intranasally. Pulmonary RSV titers, inflammation and airway hyperresponsiveness were measured five days after infection. RESULTS: CYP-treated mice show higher RSV titers in their lungs of than the untreated mice. Also, a decreased percentage of macrophages and an increased number of lymphocytes and neutrophils were present in the BAL of CYP-treated mice compared to controls. The CYP-treated group also exhibited augmented bronchoalveolar and interstitial pulmonary inflammation. The increased RSV infection in CYP-treated mice was accompanied by elevated expression of IL-10, IL-12 and IFN-γ mRNAs and proteins compared to controls. Examination of CYP-treated mice before RSV infection showed that CYP treatment significantly decreased both IFN-γ and IL-12 expression. CONCLUSIONS: These results demonstrate that CYP-treated BALB/c mice provide a better model for studying RSV immunopathology and that decreased production of IL-12 and IFN-γ are important determinants of susceptibility to RSV infection

    Attenuation of dengue virus infection by adeno-associated virus-mediated siRNA delivery

    Get PDF
    BACKGROUND: The need for safe and effective treatment of dengue virus (DEN), a class A agent that causes dengue hemorrhagic fever/dengue shock syndrome, has been a critical global priority. An effective vaccine for DEN is not yet available. In this study the possibility of attenuating DEN infection using adeno-associated virus (AAV)-encoded short interfering RNAs (siRNA) was examined in Vero cells and human dendritic cells (DCs). METHODS: A cassette encoding siRNA targeted to a 3' untranslated sequence common to all DEN serotypes was designed and tested for its ability to attenuate DEN infection by use of AAV delivery. RESULTS: Vero cells or DCs infected with AAV-siRNA showed a significant, dose-dependent reduction in DEN infection. Treatment of DCs with AAV-siRNA also decreased the DEN-induced apoptosis of DCs and did not induce significant inflammation. CONCLUSION: These results demonstrate that AAV-mediated siRNA delivery is capable of reducing DEN infection in cells and may be useful in decreasing DEN replication in humans
    • …
    corecore