60 research outputs found

    Serving MoE Models on Resource-constrained Edge Devices via Dynamic Expert Swapping

    Full text link
    Mixture of experts (MoE) is a popular technique in deep learning that improves model capacity with conditionally-activated parallel neural network modules (experts). However, serving MoE models in resource-constrained latency-critical edge scenarios is challenging due to the significantly increased model size and complexity. In this paper, we first analyze the behavior pattern of MoE models in continuous inference scenarios, which leads to three key observations about the expert activations, including temporal locality, exchangeability, and skippable computation. Based on these observations, we introduce PC-MoE, an inference framework for resource-constrained continuous MoE model serving. The core of PC-MoE is a new data structure, Parameter Committee, that intelligently maintains a subset of important experts in use to reduce resource consumption. The optimal configuration of Parameter Committee is found offline by a profiling-guided committee planner, and expert swapping and request handling at runtime are managed by an adaptive committee scheduler. To evaluate the effectiveness of PC-MoE, we conduct experiments using state-of-the-art MoE models on common computer vision and natural language processing tasks. The results demonstrate optimal trade-offs between resource consumption and model accuracy achieved by PC-MoE. For instance, on object detection tasks with the Swin-MoE model, our approach can reduce memory usage and latency by 42.34% and 18.63% with only 0.10% accuracy degradation

    Enabling Efficient Coexistence of DSRC and C-V2X in Vehicular Networks

    Get PDF

    Recursive Generalization Transformer for Image Super-Resolution

    Full text link
    Transformer architectures have exhibited remarkable performance in image super-resolution (SR). Since the quadratic computational complexity of the self-attention (SA) in Transformer, existing methods tend to adopt SA in a local region to reduce overheads. However, the local design restricts the global context exploitation, which is crucial for accurate image reconstruction. In this work, we propose the Recursive Generalization Transformer (RGT) for image SR, which can capture global spatial information and is suitable for high-resolution images. Specifically, we propose the recursive-generalization self-attention (RG-SA). It recursively aggregates input features into representative feature maps, and then utilizes cross-attention to extract global information. Meanwhile, the channel dimensions of attention matrices (query, key, and value) are further scaled to mitigate the redundancy in the channel domain. Furthermore, we combine the RG-SA with local self-attention to enhance the exploitation of the global context, and propose the hybrid adaptive integration (HAI) for module integration. The HAI allows the direct and effective fusion between features at different levels (local or global). Extensive experiments demonstrate that our RGT outperforms recent state-of-the-art methods quantitatively and qualitatively. Code is released at https://github.com/zhengchen1999/RGT.Comment: Code is available at https://github.com/zhengchen1999/RG

    Cross Aggregation Transformer for Image Restoration

    Full text link
    Recently, Transformer architecture has been introduced into image restoration to replace convolution neural network (CNN) with surprising results. Considering the high computational complexity of Transformer with global attention, some methods use the local square window to limit the scope of self-attention. However, these methods lack direct interaction among different windows, which limits the establishment of long-range dependencies. To address the above issue, we propose a new image restoration model, Cross Aggregation Transformer (CAT). The core of our CAT is the Rectangle-Window Self-Attention (Rwin-SA), which utilizes horizontal and vertical rectangle window attention in different heads parallelly to expand the attention area and aggregate the features cross different windows. We also introduce the Axial-Shift operation for different window interactions. Furthermore, we propose the Locality Complementary Module to complement the self-attention mechanism, which incorporates the inductive bias of CNN (e.g., translation invariance and locality) into Transformer, enabling global-local coupling. Extensive experiments demonstrate that our CAT outperforms recent state-of-the-art methods on several image restoration applications. The code and models are available at https://github.com/zhengchen1999/CAT.Comment: Accepted to NeurIPS 2022. Code is available at https://github.com/zhengchen1999/CA

    Natural Language based Context Modeling and Reasoning with LLMs: A Tutorial

    Full text link
    Large language models (LLMs) have become phenomenally surging, since 2018--two decades after introducing context-awareness into computing systems. Through taking into account the situations of ubiquitous devices, users and the societies, context-aware computing has enabled a wide spectrum of innovative applications, such as assisted living, location-based social network services and so on. To recognize contexts and make decisions for actions accordingly, various artificial intelligence technologies, such as Ontology and OWL, have been adopted as representations for context modeling and reasoning. Recently, with the rise of LLMs and their improved natural language understanding and reasoning capabilities, it has become feasible to model contexts using natural language and perform context reasoning by interacting with LLMs such as ChatGPT and GPT-4. In this tutorial, we demonstrate the use of texts, prompts, and autonomous agents (AutoAgents) that enable LLMs to perform context modeling and reasoning without requiring fine-tuning of the model. We organize and introduce works in the related field, and name this computing paradigm as the LLM-driven Context-aware Computing (LCaC). In the LCaC paradigm, users' requests, sensors reading data, and the command to actuators are supposed to be represented as texts. Given the text of users' request and sensor data, the AutoAgent models the context by prompting and sends to the LLM for context reasoning. LLM generates a plan of actions and responds to the AutoAgent, which later follows the action plan to foster context-awareness. To prove the concepts, we use two showcases--(1) operating a mobile z-arm in an apartment for assisted living, and (2) planning a trip and scheduling the itinerary in a context-aware and personalized manner.Comment: Under revie

    Xformer: Hybrid X-Shaped Transformer for Image Denoising

    Full text link
    In this paper, we present a hybrid X-shaped vision Transformer, named Xformer, which performs notably on image denoising tasks. We explore strengthening the global representation of tokens from different scopes. In detail, we adopt two types of Transformer blocks. The spatial-wise Transformer block performs fine-grained local patches interactions across tokens defined by spatial dimension. The channel-wise Transformer block performs direct global context interactions across tokens defined by channel dimension. Based on the concurrent network structure, we design two branches to conduct these two interaction fashions. Within each branch, we employ an encoder-decoder architecture to capture multi-scale features. Besides, we propose the Bidirectional Connection Unit (BCU) to couple the learned representations from these two branches while providing enhanced information fusion. The joint designs make our Xformer powerful to conduct global information modeling in both spatial and channel dimensions. Extensive experiments show that Xformer, under the comparable model complexity, achieves state-of-the-art performance on the synthetic and real-world image denoising tasks. We also provide code and models at https://github.com/gladzhang/Xformer.Comment: Accepted to ICLR 2024. Code and models are available at https://github.com/gladzhang/Xforme

    Hierarchical Integration Diffusion Model for Realistic Image Deblurring

    Full text link
    Diffusion models (DMs) have recently been introduced in image deblurring and exhibited promising performance, particularly in terms of details reconstruction. However, the diffusion model requires a large number of inference iterations to recover the clean image from pure Gaussian noise, which consumes massive computational resources. Moreover, the distribution synthesized by the diffusion model is often misaligned with the target results, leading to restrictions in distortion-based metrics. To address the above issues, we propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring. Specifically, we perform the DM in a highly compacted latent space to generate the prior feature for the deblurring process. The deblurring process is implemented by a regression-based method to obtain better distortion accuracy. Meanwhile, the highly compact latent space ensures the efficiency of the DM. Furthermore, we design the hierarchical integration module to fuse the prior into the regression-based model from multiple scales, enabling better generalization in complex blurry scenarios. Comprehensive experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods. Code and trained models are available at https://github.com/zhengchen1999/HI-Diff.Comment: Code is available at https://github.com/zhengchen1999/HI-Dif
    corecore