345 research outputs found
The Role of Families in Shaping Youth Social Participation: Evidence from Singapore
Youth participation in social groups is important in developing skills and experience for successful transition to adulthood. What kinds of families do youth who are active in social groups and who take on leadership positions come from? Using data from the National Youth Survey 2005, this research studies the social participation of Singaporean youth aged 15 -18. Through probit regression analysis, it examines how youth participation in Singapore is associated with two types of family characteristics. First, it examines the role of maternal education. As a proxy for social class, maternal education represents the roles of cultural capital formation and concerted involvement by middle class parents. Second, it studies the role of family challenge and support. Maternal education is found to predict both high participation and leadership. While additional family challenge induces greater participation, family support increases participation only when the level of support is high.youth participation; family challenge; family support; social class
Education and awareness of modern health care amongst aboriginal people: the case of the Jakuns of Peninsular Malaysia
Previous studies have indicated that the resettlement of the Orang Asli communities into areas nearer to towns was
with the intention of improving the health conditions of the aboriginals. Subsequent researches have since focused
on the relation between mainstream orthodox medical approaches and traditional healing practices in search of
improved approaches to advance further the health cause of the aboriginal communities. However, none of these
works have addressed the central question of how the Orang Asli have been adapting themselves to the mainstream
healthcare system while still holding strong beliefs in their traditional medicine. To close the gap this study
examined the readiness and intentions of the Orang Asli in adapting to modern health care approach amidst old
traditional health beliefs and healings practices. A qualitative study based on in-depth interviews and field
observations was carried out at a Jakun village of Kampung Kedaik, Rompin, Pahang involving 12 male and 13
female informants between 18 – 70 years old. Results of the study showed that as the Orang Asli people received
proper education they appeared to think about health differently. Most of the informants preferred modern over
traditional medicine predominantly because of their deteriorating faith in, and relative inaccessibility to traditional
medicine. The findings implied that in this modern day most of the indigenous communities were open to social
change which in this context included modern health care so as to improve their health conditions
In vitro antiviral activity of SCH446211 (SCH6), a novel inhibitor of the hepatitis C virus NS3 serine protease.
Current hepatitis C virus (HCV) therapies may cure approximately 60% of infections. They are often contraindicated or poorly tolerated, underscoring the need for safer and more effective drugs. A novel, alpha-ketoamide-derived, substrate-based inhibitor of the HCV serine protease (SCH446211) was developed. Compared with earlier reported inhibitors of similar chemical class, it has a P1'-P2' extension which provides extended interaction with the protease active site. The aim of this study was to evaluate the in vitro antiviral activity of SCH446211.
Binding constant of SCH446211 to HCV NS3 protease was measured with the chromogenic substrate in vitro cleavage assay. Cell-based activity of SCH446211 was evaluated in replicon cells, which are Huh-7 hepatoma cells stably transfected with a subgenomic HCV RNA as reported previously. After 72 h of incubation with SCH446211, viral transcription and protein expression were measured by real-time RT-PCR (TaqMan), quantitative in situ hybridization, immunoblot and indirect immunofluorescence.
The binding constant of SCH446211 to HCV NS3 protease was 3.8 +/- 0.4 nM. HCV replication and protein expression were inhibited by SCH446211 in replicon cells as consistently shown by four techniques. In particular, based on quantitative real-time RT-PCR measurements, the IC50 and IC90 of SCH446211 were estimated to be 40 +/- 20 and 100 +/- 20 nM (n = 17), respectively. Long-term culture of replicon cells with SCH446211 reduced replicon RNA to <0.1 copy per cell. SCH446211 did not show cellular toxicity at concentrations up to 50 microM.
SCH446211 is a potent inhibitor of HCV protease in vitro. Its extended interaction with the HCV NS3 protease active site is associated with potent in vitro antiviral activity. This observation is potentially a useful guide for development of future potent inhibitors against HCV NS3 protease
Antibiotic use for inpatient newborn care with suspected infection: EN-BIRTH multi-country validation study
Background
An estimated 30 million neonates require inpatient care annually, many with life-threatening infections. Appropriate antibiotic management is crucial, yet there is no routine measurement of coverage. The Every Newborn Birth Indicators Research Tracking in Hospitals (EN-BIRTH) study aimed to validate maternal and newborn indicators to inform measurement of coverage and quality of care. This paper reports validation of reported antibiotic coverage by exit survey of mothers for hospitalized newborns with clinically-defined infections, including sepsis, meningitis, and pneumonia.
Methods
EN-BIRTH study was conducted in five hospitals in Bangladesh, Nepal, and Tanzania (July 2017–July 2018). Neonates were included based on case definitions to focus on term/near-term, clinically-defined infection syndromes (sepsis, meningitis, and pneumonia), excluding major congenital abnormalities. Clinical management was abstracted from hospital inpatient case notes (verification) which was considered as the gold standard against which to validate accuracy of women’s report. Exit surveys were conducted using questions similar to The Demographic and Health Surveys (DHS) approach for coverage of childhood pneumonia treatment. We compared survey-report to case note verified, pooled across the five sites using random effects meta-analysis.
Results
A total of 1015 inpatient neonates admitted in the five hospitals met inclusion criteria with clinically-defined infection syndromes. According to case note verification, 96.7% received an injectable antibiotic, although only 14.5% of them received the recommended course of at least 7 days. Among women surveyed (n = 910), 98.8% (95% CI: 97.8–99.5%) correctly reported their baby was admitted to a neonatal ward. Only 47.1% (30.1–64.5%) reported their baby’s diagnosis in terms of sepsis, meningitis, or pneumonia. Around three-quarters of women reported their baby received an injection whilst in hospital, but 12.3% reported the correct antibiotic name. Only 10.6% of the babies had a blood culture and less than 1% had a lumbar puncture.
Conclusions
Women’s report during exit survey consistently underestimated the denominator (reporting the baby had an infection), and even more so the numerator (reporting known injectable antibiotics). Admission to the neonatal ward was accurately reported and may have potential as a contact point indicator for use in household surveys, similar to institutional births. Strengthening capacity and use of laboratory diagnostics including blood culture are essential to promote appropriate use of antibiotics. To track quality of neonatal infection management, we recommend using inpatient records to measure specifics, requiring more research on standardised inpatient records
Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b
We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society
Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run
Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society
Distinct germline genetic susceptibility profiles identified for common non-Hodgkin lymphoma subtypes
Lymphoma risk is elevated for relatives with common non-Hodgkin lymphoma (NHL) subtypes, suggesting shared genetic susceptibility across subtypes. To evaluate the extent of mutual heritability among NHL subtypes and discover novel loci shared among subtypes, we analyzed data from eight genome-wide association studies within the InterLymph Consortium, including 10,629 cases and 9505 controls. We utilized Association analysis based on SubSETs (ASSET) to discover loci for subsets of NHL subtypes and evaluated shared heritability across the genome using Genome-wide Complex Trait Analysis (GCTA) and polygenic risk scores. We discovered 17 genome-wide significant loci (P < 5 × 10−8) for subsets of NHL subtypes, including a novel locus at 10q23.33 (HHEX) (P = 3.27 × 10−9). Most subset associations were driven primarily by only one subtype. Genome-wide genetic correlations between pairs of subtypes varied broadly from 0.20 to 0.86, suggesting substantial heterogeneity in the extent of shared heritability among subtypes. Polygenic risk score analyses of established loci for different lymphoid malignancies identified strong associations with some NHL subtypes (P < 5 × 10−8), but weak or null associations with others. Although our analyses suggest partially shared heritability and biological pathways, they reveal substantial heterogeneity among NHL subtypes with each having its own distinct germline genetic architecture
Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO
The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
- …