14,780 research outputs found

    Supersolid phase in spin dimer XXZ systems under magnetic field

    Full text link
    Using quantum Monte Carlo method, we study, under external magnetic fields, the ground state phase diagram of the two-dimensional spin SS=1/2 dimer model with an anisotropic intra-plane antiferromagnetic coupling. With the anisotropy 4Δ34 \gtrsim \Delta \gtrsim 3, a supersolid phase characterized by a non-uniform bose condensate density that breaks translational symmetry is found. The rich phase diagram also contains a checkerboard solid and two different types of superfluid phase formed by Sz=+1S_z=+1 and Sz=0S_z=0 spin triplets, with finite staggered magnetization in z-axis and in-plane direction, respectively. As we show, the model can be realized as a consequence of including the next nearest neighbor coupling among dimers and our results suggest that spin dimer systems may be an ideal model system to study the supersolid phase.Comment: 4 pages, 5 figure

    Radiative corrections to the lightest KK states in the T^2/(Z_2\times Z_2') orbifold

    Get PDF
    We study radiative corrections localized in the fixed points of the orbifold for the field theory in six dimensions with two dimensions compactified on the T2/(Z2×Z2)T_2/(Z_2\times Z_2') orbifold in a specific realistic model for low energy physics that solves the proton decay and neutrino mass problem. We calculate corrections to the masses of the lightest stable KK modes, which could be the candidates for the dark matter.Comment: 14 pages, 2 figure

    Solid Loss of Carrots During Simulated Gastric Digestion

    Get PDF
    The knowledge of solid loss kinetics of foods during digestion is crucial for understanding the factors that constrain the release of nutrients from the food matrix and their fate of digestion. The objective of this study was to investigate the solid loss of carrots during simulated gastric digestion as affected by pH, temperature, viscosity of gastric fluids, mechanical force present in stomach, and cooking. Cylindrical carrot samples were tested by static soaking method and using a model stomach system. The weight retention, moisture, and loss of dry mass were determined. The results indicated that acid hydrolysis is critical for an efficient mass transfer and carrot digestion. Internal resistance rather than external resistance is dominant in the transfer of soluble solids from carrot to gastric fluid. Increase in viscosity of gastric fluid by adding 0.5% gum (w/w) significantly increased the external resistance and decreased mass transfer rate of carrots in static soaking. When mechanical force was not present, 61% of the solids in the raw carrot samples were released into gastric fluid after 4 h of static soaking in simulated gastric juice. Mechanical force significantly increased solid loss by causing surface erosion. Boiling increased the disintegration of carrot during digestion that may favor the loss of solids meanwhile reducing the amount of solids available for loss in gastric juice. Weibull function was successfully used to describe the solid loss of carrot during simulated digestion. The effective diffusion coefficients of solids were calculated using the Fick’s second law of diffusion for an infinite cylinder, which are between 0.75 × 10−11 and 8.72 × 10−11 m2/s, depending on the pH of the gastric fluid

    Improvement of dielectric loss of doped Ba0.5Sr0.5TiO3 thin films for tunable microwave devices

    Get PDF
    Al2O3-Ba0.5Sr0.5TiO3 (Al2O3-BST) thin films, with different Al2O3 contents, were deposited on (100) LaAlO3 substrate by pulsed laser deposition (PLD) technique. The Al2O3-BST films was demosnstrated to be a suitable systems to fabricate ferroelectric thin films with low dielectric loss and higher figure of merit for tunable microwave devices. Pure BST thin films were also fabricated for comparison purpose. The films' structure and morphology were analyzed by X-ray diffractiopn and scanning electron microscopy, respectively; nad showed that the surface roughness for the Al2O3-BST films increased with the Al2O3 content. Apart from that, the broadening in the intensity peak in XRD result indicating the grain size of the Al2O3-BST films reduced with the increasing of Al2O3 dopant. We measured the dielctric properties of Al2O3-BST films with a home-made non-destructive dual resonator method at frequency ~ 7.7 GHZ. The effect of doped Al2O3 into BST thin films significantly reduced the dielectric constant, dielectric loss and tunability compare to pure BST thin film. Our result shows the figure of merit (K), used to compare the films with varied dielectric properties, increased with the Al2O3 content. Therefore Al2O3-BST films show the potential to be exploited in tunable microwave devices.Comment: 8 pages, 4 figures, 1 table. Accepted & tentatively for Feb 15 2004 issue, Journal of Applied Physic
    corecore