182 research outputs found
Digital-analog hybrid matrix multiplication processor for optical neural networks
The computational demands of modern AI have spurred interest in optical
neural networks (ONNs) which offer the potential benefits of increased speed
and lower power consumption. However, current ONNs face various challenges,most
significantly a limited calculation precision (typically around 4 bits) and the
requirement for high-resolution signal format converters (digital-to-analogue
conversions (DACs) and analogue-to-digital conversions (ADCs)). These
challenges are inherent to their analog computing nature and pose significant
obstacles in practical implementation. Here, we propose a digital-analog hybrid
optical computing architecture for ONNs, which utilizes digital optical inputs
in the form of binary words. By introducing the logic levels and decisions
based on thresholding, the calculation precision can be significantly enhanced.
The DACs for input data can be removed and the resolution of the ADCs can be
greatly reduced. This can increase the operating speed at a high calculation
precision and facilitate the compatibility with microelectronics. To validate
our approach, we have fabricated a proof-of-concept photonic chip and built up
a hybrid optical processor (HOP) system for neural network applications. We
have demonstrated an unprecedented 16-bit calculation precision for
high-definition image processing, with a pixel error rate (PER) as low as
at an signal-to-noise ratio (SNR) of 18.2 dB. We have also
implemented a convolutional neural network for handwritten digit recognition
that shows the same accuracy as the one achieved by a desktop computer. The
concept of the digital-analog hybrid optical computing architecture offers a
methodology that could potentially be applied to various ONN implementations
and may intrigue new research into efficient and accurate domain-specific
optical computing architectures for neural networks
A Millennial-Scale Tephra Event-Stratigraphic Record of the South China Sea since the Penultimate Interglacial
AbstractLarge volcanic eruptions have significant impacts on climate and environmental changes. The deposition of tephra in marine sediments may serve as an eruption recorder, but it has not been extensively studied in the western Pacific. This study explored a millennial-scale tephra event-stratigraphy with multiple indicators in a sediment core collected from the eastern South China Sea (SCS) basin. The magnetic susceptibility (MS), Fe and Mn concentrations determined by X-ray fluorescence (XRF), and identification of individual ash particles were used to identify tephra layers and reconstruct the history of volcanic activity. Nine visible volcaniclastic units (VVU) and two cryptotephra layers have been identified based on their distinct features, as manifested by high MS, Fe, and Mn concentrations and single-peak grain size distribution. The VVUs and cryptotephra layers reveal elevated volcanic activities. Using the radiocarbon age model and oxygen isotope stratigraphy, these episodes could roughly correspond to the following periods: 1-11 ka, 16-17 ka, 27-31 ka, 41-42 ka, 45-46 ka, 49-50 ka, 77-80 ka, 90-91 ka, 97-99 ka, 116-126 ka, and 132-140 ka. The alkenone-derived SST has significant glacial cycles and good synchronicity with other SCS SST records, which could partially help build the preliminary age model. Despite possible age errors larger than 1 kyr, the discovery and timing of tephra layers provide a preliminary framework to further investigate the impact of historical volcanic eruptions on climate changes
Integrated dual-laser photonic chip for high-purity carrier generation enabling ultrafast terahertz wireless communications
Photonic generation of Terahertz (THz) carriers displays high potential for THz communications with a large tunable range and high modulation bandwidth. While many photonics-based THz generations have recently been demonstrated with discrete bulky components, their practical applications are significantly hindered by the large footprint and high energy consumption. Herein, we present an injection-locked heterodyne source based on generic foundry-fabricated photonic integrated circuits (PIC) attached to a uni-traveling carrier photodiode generating high-purity THz carriers. The generated THz carrier is tunable within the range of 0-1.4 THz, determined by the wavelength spacing between the two monolithically integrated distributed feedback (DFB) lasers. This scheme generates and transmits a 131 Gbits-1 net rate signal over a 10.7-m distance with -24 dBm emitted power at 0.4 THz. This monolithic dual-DFB PIC-based THz generation approach is a significant step towards fully integrated, cost-effective, and energy-efficient THz transmitters
- …