3 research outputs found

    Fused filament fabricated polypropylene composite reinforced by aligned glass fibers

    No full text
    3D printing using fused composite filament fabrication technique (FFF) allows prototyping and manufacturing of durable, lightweight, and customizable parts on demand. Such composites demonstrate significantly improved printability, due to the reduction of shrinkage and warping, alongside the enhancement of strength and rigidity. In this work, we use polypropylene filament reinforced by short glass fibers to demonstrate the effect of fiber orientation on mechanical tensile properties of the 3D printed specimens. The influence of the printed layer thickness and raster angle on final fiber orientations was investigated using X-ray micro-computed tomography. The best ultimate tensile strength of 57.4 MPa and elasticity modulus of 5.5 GPa were obtained with a 90° raster angle, versus 30.4 MPa and 2.5 GPa for samples with a criss-cross 45°, 135° raster angle, with the thinnest printed layer thickness of 0.1 mm.Peer reviewe

    Multifunctional Elastic Nanocomposites with Extremely Low Concentrations of Single-Walled Carbon Nanotubes

    No full text
    Funding Information: This work was supported by Russian Foundation for Basic Research Grant No. 18-29-06071. We thank the Council on grants of the President of the Russian Federation grant number HIII-1330.2022.1.3. F.F. and D.K. thank Russian Science Foundation, Grant No. 21-73-10288 for support of impedance spectroscopy studies. Publisher Copyright: © 2022 American Chemical Society. All rights reserved.Stretchable and flexible electronics has attracted broad attention over the last years. Nanocomposites based on elastomers and carbon nanotubes are a promising material for soft electronic applications. Despite the fact that single-walled carbon nanotube (SWCNT) based nanocomposites often demonstrate superior properties, the vast majority of the studies were devoted to those based on multiwalled carbon nanotubes (MWCNTs) mainly because of their higher availability and easier processing procedures. Moreover, high weight concentrations of MWCNTs are often required for high performance of the nanocomposites in electronic applications. Inspired by the recent drop in the SWCNT price, we have focused on fabrication of elastic nanocomposites with very low concentrations of SWCNTs to reduce the cost of nanocomposites further. In this work, we use a fast method of coagulation (antisolvent) precipitation to fabricate elastic composites based on thermoplastic polyurethane (TPU) and SWCNTs with a homogeneous distributionof SWCNTs in bulk TPU. Applicability of the approach is confirmed by extra low percolation threshold of 0.006 wt % and, as a consequence, by the state-of-the-art performance of fabricated elastic nanocomposites at very low SWCNT concentrations for strain sensing (gauge factor of 82 at 0.05 wt %) and EMI shielding (efficiency of 30 dB mm-1at 0.01 wt %).Peer reviewe
    corecore