5 research outputs found
Recommended from our members
Research and Design of a Routing Protocol in Large-Scale Wireless Sensor Networks
无线传感器网络,作为全球未来十大技术之一,集成了传感器技术、嵌入式计算技术、分布式信息处理和自组织网技术,可实时感知、采集、处理、传输网络分布区域内的各种信息数据,在军事国防、生物医疗、环境监测、抢险救灾、防恐反恐、危险区域远程控制等领域具有十分广阔的应用前景。 本文研究分析了无线传感器网络的已有路由协议,并针对大规模的无线传感器网络设计了一种树状路由协议,它根据节点地址信息来形成路由,从而简化了复杂繁冗的路由表查找和维护,节省了不必要的开销,提高了路由效率,实现了快速有效的数据传输。 为支持此路由协议本文提出了一种自适应动态地址分配算——ADAR(AdaptiveDynamicAddre...As one of the ten high technologies in the future, wireless sensor network, which is the integration of micro-sensors, embedded computing, modern network and Ad Hoc technologies, can apperceive, collect, process and transmit various information data within the region. It can be used in military defense, biomedical, environmental monitoring, disaster relief, counter-terrorism, remote control of haz...学位:工学硕士院系专业:信息科学与技术学院通信工程系_通信与信息系统学号:2332007115216
Construction and commissioning of the compact energy-recovery linac at KEK
Energy-recovery linacs (ERLs) are promising for advanced synchrotron light sources, high-power free electron lasers (FELs), high-brightness gamma-ray sources, and electron–ion colliders. To demonstrate the critical technology of ERL-based light sources, we have designed and constructed a test accelerator, the compact ERL (cERL). Using advanced technology that includes a photocathode direct current (DC) electron gun and two types of 1.3-GHz-frequency superconducting cavities, the cERL was designed to be capable of recirculating low emittance (1 mm mrad) and high average-current (10 mA) electron beams while recovering the beam energy. During initial commissioning, the cERL demonstrated successful recirculation of high-quality beams with normalized transverse emittance of 0.14 mm mrad and momentum spread of 1.2 10−4 (rms) at a beam energy of 20 MeV and bunch charge below 100 fC. Energy recovery in the superconducting main linac was also demonstrated for high-average-current continuous-wave beams. These results constitute an important milestone toward realizing ERL-based light sources
The First Beam Recirculation and Beam Tuning in the Compact ERL at KEK
Superconducting(SC)-linac-based light sources, which can produce ultra-brilliant photon beams in CW operation, are attracting worldwide attention. In KEK, we have been conducting R&D; efforts towards the energy-recovery-linac(ERL)-based light source* since 2006. To demonstrate the key technologies for the ERL, we constructed the Compact ERL (cERL)** from 2009 to 2013. In the cERL, high-brightness CW electron beams are produced using a 500-kV photocathode DC gun. The beams are accelerated using SC cavities, transported through a recirculation loop, decelerated in the SC cavities, and dumped. In the February of 2014, we succeeded in accelerating and recirculating the CW beams of 4.5 micro-amperes in the cERL; the beams were successfully transported from the gun to the beam dump under energy recovery operation in the main linac. Then, precise tuning of beam optics and diagnostics of beam properties are under way. We report our experience on the beam commissioning, as well as the results of initial measurements of beam properties