27 research outputs found

    Discrepancies in perception of fall risk between patients with subacute stroke and physical therapists in a rehabilitation hospital: a retrospective cohort study

    Get PDF
    Objective: Falls are one of the most common complications of a stroke. This study aimed to clarify the discrepancy between the perceived fall risk of hospitalized patients with stroke and the clinical judgment of physical therapists and to examine the changes in discrepancy during hospitalization.Design: Retrospective cohort study.Patients: This study included 426 patients with stroke admitted to a Japanese convalescent rehabilitation hospital between January 2019 and December 2020.Methods: The Falls Efficacy Scale-International was used to assess both patients’ and physical therapists’ perception of fall risk. The difference in Falls Efficacy Scale-International scores assessed by patients and physical therapists was defined as the discrepancy in fall risk, and its association with the incidence of falls during hospitalization was investigated.Results: Patients had a lower perception of fall risk than physical therapists at admission (p < 0.001), and this trend continued at discharge (p < 0.001). The discrepancy in fall risk perception was reduced at discharge for non-fallers and single fallers (p < 0.001), whereas the difference remained in multiple fallers.Conclusion: Unlike physical therapists, patients underestimated their fall risk, especially patients who experienced multiple falls. These results may be useful for planning measures to prevent falls during hospitalization

    Effects of Leg Motor Imagery Combined With Electrical Stimulation on Plasticity of Corticospinal Excitability and Spinal Reciprocal Inhibition

    Get PDF
    Motor imagery (MI) combined with electrical stimulation (ES) enhances upper-limb corticospinal excitability. However, its after-effects on both lower limb corticospinal excitability and spinal reciprocal inhibition remain unknown. We aimed to investigate the effects of MI combined with peripheral nerve ES (MI + ES) on the plasticity of lower limb corticospinal excitability and spinal reciprocal inhibition. Seventeen healthy individuals performed the following three tasks on different days, in a random order: (1) MI alone; (2) ES alone; and (3) MI + ES. The MI task consisted of repetitive right ankle dorsiflexion for 20 min. ES was percutaneously applied to the common peroneal nerve at a frequency of 100 Hz and intensity of 120% of the sensory threshold of the tibialis anterior (TA) muscle. We examined changes in motor-evoked potential (MEP) of the TA (task-related muscle) and soleus muscle (SOL; task-unrelated muscle). We also examined disynaptic reciprocal inhibition before, immediately after, and 10, 20, and 30 min after the task. MI + ES significantly increased TA MEPs immediately and 10 min after the task compared with baseline, but did not change the task-unrelated muscle (SOL) MEPs. MI + ES resulted in a significant increase in the magnitude of reciprocal inhibition immediately and 10 min after the task compared with baseline. MI and ES alone did not affect TA MEPs or reciprocal inhibition. MI combined with ES is effective in inducing plastic changes in lower limb corticospinal excitability and reciprocal Ia inhibition

    The Effect of Dual-Hemisphere Transcranial Direct Current Stimulation Over the Parietal Operculum on Tactile Orientation Discrimination

    Get PDF
    The parietal operculum (PO) often shows ipsilateral activation during tactile object perception in neuroimaging experiments. However, the relative contribution of the PO to tactile judgment remains unclear. Here, we examined the effect of transcranial direct current stimulation (tDCS) over bilateral PO to test the relative contributions of the ipsilateral PO to tactile object processing. Ten healthy adults participated in this study, which had a double-blind, sham-controlled, cross-over design. Participants discriminated grating orientation during three tDCS and sham conditions. In the dual-hemisphere tDCS conditions, anodal and cathodal electrodes were placed over the left and right PO. In the uni-hemisphere tDCS condition, anodal and cathodal electrodes were applied over the left PO and contralateral orbit, respectively. In the tDCS and sham conditions, we applied 2 mA for 15 min and for 15 s, respectively. Computational models of electric fields (EFs) during tDCS indicated that the strongest electric fields were located in regions in and around the PO. Compared with the sham condition, dual-hemisphere tDCS improved the discrimination threshold of the index finger contralateral to the anodal electrode. Importantly, dual-hemisphere tDCS with the anodal electrode over the left PO yielded a decreased threshold in the right finger compared with the uni-hemisphere tDCS condition. These results suggest that the ipsilateral PO inhibits tactile processing of grating orientation, indicating interhemispheric inhibition (IHI) of the PO

    Rehabilitation outcomes of stroke patients with low left ventricular ejection fraction in the subacute rehabilitation phase

    No full text
    Objective: To examine the left ventricular ejection fraction in patients with subacute stroke and compare rehabilitation outcomes between those with decreased left ventricular ejection fraction and those without. Design: Retrospective chart review. Subjects: A total of 482 consecutive patients with stroke admitted to a convalescent rehabilitation hospital. Methods: Patients were assessed using transthoracic echocardiography within 7 days of admission. The patients were divided into a group with low left ventricular ejection fraction and a group with preserved left ventricular ejection fraction. Functional Independence Measure (FIM) scores at admission and discharge, FIM gain, FIM efficiency, and discharge disposition were compared between groups. Results: The low left ventricular ejection fraction group had significantly lower cognitive and total FIM scores on admission than the preserved left ventricular ejection fraction group. The patients in the low left ventricular ejection fraction group tended to be transferred to acute hospitals more frequently. How-ever, the total score of discharge FIM, FIM gain, and FIM efficiency did not differ significantly between the groups when rehabilitation was continued until discharge. Conclusion: Stroke patients with low left ventricular ejection fraction in the subacute phase could achieve almost the same functional outcomes as those of patients with preserved left ventricular ejection fraction. Although the general medical condition should be considered, the finding of low left ventricular ejection fraction did not pose a barrier to successful rehabilitation after stroke

    Improvement of predictive accuracies of functional outcomes after subacute stroke inpatient rehabilitation by machine learning models.

    No full text
    ObjectivesStepwise linear regression (SLR) is the most common approach to predicting activities of daily living at discharge with the Functional Independence Measure (FIM) in stroke patients, but noisy nonlinear clinical data decrease the predictive accuracies of SLR. Machine learning is gaining attention in the medical field for such nonlinear data. Previous studies reported that machine learning models, regression tree (RT), ensemble learning (EL), artificial neural networks (ANNs), support vector regression (SVR), and Gaussian process regression (GPR), are robust to such data and increase predictive accuracies. This study aimed to compare the predictive accuracies of SLR and these machine learning models for FIM scores in stroke patients.MethodsSubacute stroke patients (N = 1,046) who underwent inpatient rehabilitation participated in this study. Only patients' background characteristics and FIM scores at admission were used to build each predictive model of SLR, RT, EL, ANN, SVR, and GPR with 10-fold cross-validation. The coefficient of determination (R2) and root mean square error (RMSE) values were compared between the actual and predicted discharge FIM scores and FIM gain.ResultsMachine learning models (R2 of RT = 0.75, EL = 0.78, ANN = 0.81, SVR = 0.80, GPR = 0.81) outperformed SLR (0.70) to predict discharge FIM motor scores. The predictive accuracies of machine learning methods for FIM total gain (R2 of RT = 0.48, EL = 0.51, ANN = 0.50, SVR = 0.51, GPR = 0.54) were also better than of SLR (0.22).ConclusionsThis study suggested that the machine learning models outperformed SLR for predicting FIM prognosis. The machine learning models used only patients' background characteristics and FIM scores at admission and more accurately predicted FIM gain than previous studies. ANN, SVR, and GPR outperformed RT and EL. GPR could have the best predictive accuracy for FIM prognosis

    Transcranial Direct Current Stimulation Does Not Affect Lower Extremity Muscle Strength Training in Healthy Individuals: A Triple-Blind, Sham-Controlled Study

    Get PDF
    The present study investigated the effects of anodal transcranial direct current stimulation (tDCS) on lower extremity muscle strength training in 24 healthy participants. In this triple-blind, sham-controlled study, participants were randomly allocated to the anodal tDCS plus muscle strength training (anodal tDCS) group or sham tDCS plus muscle strength training (sham tDCS) group. Anodal tDCS (2 mA) was applied to the primary motor cortex of the lower extremity during muscle strength training of the knee extensors and flexors. Training was conducted once every 3 days for 3 weeks (7 sessions). Knee extensor and flexor peak torques were evaluated before and after the 3 weeks of training. After the 3-week intervention, peak torques of knee extension and flexion changed from 155.9 to 191.1 Nm and from 81.5 to 93.1 Nm in the anodal tDCS group. Peak torques changed from 164.1 to 194.8 Nm on extension and from 78.0 to 85.6 Nm on flexion in the sham tDCS group. In both groups, peak torques of knee extension and flexion significantly increased after the intervention, with no significant difference between the anodal tDCS and sham tDCS groups. In conclusion, although the administration of eccentric training increased knee extensor and flexor peak torques, anodal tDCS did not enhance the effects of lower extremity muscle strength training in healthy individuals. The present null results have crucial implications for selecting optimal stimulation parameters for clinical trials

    Unilateral Arm Crank Exercise Test for Assessing Cardiorespiratory Fitness in Individuals with Hemiparetic Stroke

    Get PDF
    Cardiorespiratory fitness assessment with leg cycle exercise testing may be influenced by motor impairments in the paretic lower extremity. Hence, this study examined the usefulness of a unilateral arm crank exercise test to assess cardiorespiratory fitness in individuals with stroke, including sixteen individuals with hemiparetic stroke (mean ± SD age, 56.4±7.5 years) and 12 age- and sex-matched healthy controls. Participants performed the unilateral arm crank and leg cycle exercise tests to measure oxygen consumption (V˙O2) and heart rate at peak exercise. The V˙O2 at peak exercise during the unilateral arm crank exercise test was significantly lower in the stroke group than in the control group (p<0.001). In the stroke group, the heart rate at peak exercise during the unilateral arm crank exercise test did not significantly correlate with the Brunnstrom recovery stages of the lower extremity (p=0.137), whereas there was a significant correlation during the leg cycle exercise test (rho = 0.775, p<0.001). The unilateral arm crank exercise test can detect the deterioration of cardiorespiratory fitness independently of lower extremity motor impairment severity in individuals with hemiparetic stroke. This study is registered with UMIN000014733

    Comparing the contribution of each clinical indicator in predictive models trained on 980 subacute stroke patients: a retrospective study

    No full text
    Abstract Post-stroke disability affects patients’ lifestyles after discharge, and it is essential to predict functional recovery early in hospitalization to allow time for appropriate decisions. Previous studies reported important clinical indicators, but only a few clinical indicators were analyzed due to insufficient numbers of cases. Although review articles can exhaustively identify many prognostic factors, it remains impossible to compare the contribution of each predictor. This study aimed to determine which clinical indicators contribute more to predicting the functional independence measure (FIM) at discharge by comparing standardized coefficients. In this study, 980 participants were enrolled to build predictive models with 32 clinical indicators, including the stroke impairment assessment set (SIAS). Trunk function had the most significant standardized coefficient of 0.221. The predictive models also identified easy FIM sub-items, SIAS, and grip strength on the unaffected side as having positive standardized coefficients. As for the predictive accuracy of this model, R2 was 0.741. This is the first report that included FIM sub-items separately in post-stroke predictive models with other clinical indicators. Trunk function and easy FIM sub-items were included in the predictive model with larger positive standardized coefficients. This predictive model may predict prognosis with high accuracy, fewer clinical indicators, and less effort to predict
    corecore