16 research outputs found

    A Theme-Rewriting Approach for Generating Algebra Word Problems

    Full text link
    Texts present coherent stories that have a particular theme or overall setting, for example science fiction or western. In this paper, we present a text generation method called {\it rewriting} that edits existing human-authored narratives to change their theme without changing the underlying story. We apply the approach to math word problems, where it might help students stay more engaged by quickly transforming all of their homework assignments to the theme of their favorite movie without changing the math concepts that are being taught. Our rewriting method uses a two-stage decoding process, which proposes new words from the target theme and scores the resulting stories according to a number of factors defining aspects of syntactic, semantic, and thematic coherence. Experiments demonstrate that the final stories typically represent the new theme well while still testing the original math concepts, outperforming a number of baselines. We also release a new dataset of human-authored rewrites of math word problems in several themes.Comment: To appear EMNLP 201

    Learning Answer Generation using Supervision from Automatic Question Answering Evaluators

    Full text link
    Recent studies show that sentence-level extractive QA, i.e., based on Answer Sentence Selection (AS2), is outperformed by Generation-based QA (GenQA) models, which generate answers using the top-k answer sentences ranked by AS2 models (a la retrieval-augmented generation style). In this paper, we propose a novel training paradigm for GenQA using supervision from automatic QA evaluation models (GAVA). Specifically, we propose three strategies to transfer knowledge from these QA evaluation models to a GenQA model: (i) augmenting training data with answers generated by the GenQA model and labelled by GAVA (either statically, before training, or (ii) dynamically, at every training epoch); and (iii) using the GAVA score for weighting the generator loss during the learning of the GenQA model. We evaluate our proposed methods on two academic and one industrial dataset, obtaining a significant improvement in answering accuracy over the previous state of the art.Comment: Accepted at ACL 202

    Pyramidal Recurrent Unit for Language Modeling

    Full text link
    LSTMs are powerful tools for modeling contextual information, as evidenced by their success at the task of language modeling. However, modeling contexts in very high dimensional space can lead to poor generalizability. We introduce the Pyramidal Recurrent Unit (PRU), which enables learning representations in high dimensional space with more generalization power and fewer parameters. PRUs replace the linear transformation in LSTMs with more sophisticated interactions including pyramidal and grouped linear transformations. This architecture gives strong results on word-level language modeling while reducing the number of parameters significantly. In particular, PRU improves the perplexity of a recent state-of-the-art language model Merity et al. (2018) by up to 1.3 points while learning 15-20% fewer parameters. For similar number of model parameters, PRU outperforms all previous RNN models that exploit different gating mechanisms and transformations. We provide a detailed examination of the PRU and its behavior on the language modeling tasks. Our code is open-source and available at https://sacmehta.github.io/PRU/Comment: Accepted as a long paper in EMNLP 201

    BizBench: A Quantitative Reasoning Benchmark for Business and Finance

    Full text link
    As large language models (LLMs) impact a growing number of complex domains, it is becoming increasingly important to have fair, accurate, and rigorous evaluation benchmarks. Evaluating the reasoning skills required for business and financial NLP stands out as a particularly difficult challenge. We introduce BizBench, a new benchmark for evaluating models' ability to reason about realistic financial problems. BizBench comprises 8 quantitative reasoning tasks. Notably, BizBench targets the complex task of question-answering (QA) for structured and unstructured financial data via program synthesis (i.e., code generation). We introduce three diverse financially-themed code-generation tasks from newly collected and augmented QA data. Additionally, we isolate distinct financial reasoning capabilities required to solve these QA tasks: reading comprehension of financial text and tables, which is required to extract correct intermediate values; and understanding domain knowledge (e.g., financial formulas) needed to calculate complex solutions. Collectively, these tasks evaluate a model's financial background knowledge, ability to extract numeric entities from financial documents, and capacity to solve problems with code. We conduct an in-depth evaluation of open-source and commercial LLMs, illustrating that BizBench is a challenging benchmark for quantitative reasoning in the finance and business domain.Comment: Work in progres
    corecore