9 research outputs found

    Response of sweet pepper autofluorescence against solar radiation

    Get PDF
    Shades are adjusted in sweet pepper cultivation, based on solar exposure levels. Pyranometers and photosensitive films have recently been introduced to smart agriculture. However, there are no means of observing biological responses to solar exposure. In this study, we hypothesized that solar exposure levels affect the visible autofluorescence of sweet pepper under 365 nm illumination. To test this hypothesis, we cultivated sweet pepper plants under two exposure conditions, low (half of the normal) and high (the normal). Fluorescence photography (365 nm illumination) revealed that dark-fluorescent peppers only arise when cultivated under high-exposure conditions (0.7-fold decline at emission of 390 nm for high-exposure conditions). Microscopic and spectroscopic observations showed that blue autofluorescence was accompanied by an accumulation of UVB pigments (1.2-factor increase in the absorbance at 300 nm) and epidermal development (1.3-fold thicker cell wall). This study suggests that the autofluorescence of sweet pepper can possibly be used to understand the response of crop to solar radiation at a fruit level in horticulture

    A Nondestructive Eggshell Thickness Measurement Technique Using Terahertz Waves

    Get PDF
    Eggshells play a number of important roles in the avian and reptile kingdom: protection of internal contents and as a major source of minerals for developing embryos. However, when researching these respective roles, eggshell thickness measurement remains a bottleneck due to the lack of a non-destructive measurement techniques. As a result, many avian and reptile research protocols omit consideration of eggshell thickness bias on egg or embryo growth and development. Here, we validate a non-destructive method to estimate eggshell thickness based on terahertz (THz) reflectance spectroscopy using chicken white coloured eggs. Since terahertz waves are reflected from outer air-eggshell interface, as well as the inner eggshell-membrane boundary, the resulting interference signals depend on eggshell thickness. Thus, it is possible to estimate shell thickness from the oscillation distance in frequency-domain. A linear regression-based prediction model for non-destructive eggshell thickness measurement was developed, which had a coefficient of determination (R2) of 0.93, RMSEP of 0.009, RPD of 3.45 and RER 13.67. This model can estimate eggshell thickness to a resolution of less than 10 μm. This method has the potential to expand the protocols in the field of avian and reptile research, as well as be applied to industrial grading of eggs

    Autofluorescence changes of tomato surface tissues during overripening

    Get PDF
    We investigated the autofluorescence of tomato surface tissues during overripening at 25 °C for 13 days. Microscopic images and fluorescence spectra of tissues, including the epidermis and cuticle, were examined (excitation at 360 nm), revealing that the autofluorescence changes were related to the epidermis, particularly the fluorophores in the cuticle

    Association of fruit, pericarp, and epidermis traits with surface autofluorescence in green peppers

    Get PDF
    We investigated the association of blue fluorescence (excitation at 365 nm) with the traits of the fruit, pericarp, and epidermis in green peppers. The fruits were manually classified into two groups based on fluorescence brightness. The dark fluorescence group showed the accumulation of blue-absorbing pigments and a thicker cuticular structure, suggesting epidermal development

    Monitoring mature tomato (red stage) quality during storage using ultraviolet-induced visible fluorescence image

    Get PDF
    The potential of UV-induced fluorescence imaging was investigated as a non-destructive tool to monitor postharvest quality degradation of tomatoes harvested at the red stage and stored at 25 °C. The fluorescence images (excitation at 365 nm) were found to be a better indicator of tomato quality degradation than color images after color saturation. Tomatoes were stored at 25 °C for 9 d. The changes in color and fluorescence of tomato were evaluated by two types of images: Color and fluorescence images. A conventional colorimeter was also used for as a reference. Changes in the RGB ratio for these two types of images were opposite. In the color images, the G ratio decreased rapidly for the initial 3 or 5 d and then stabilized afterwards. On the other hand, in the fluorescence images, the G ratio increased continuously up to 9 d. Given that temperature conditions during transportation and storage of tomatoes is not always ideal, the results from this research provide the foundation for developing a postharvest monitoring system of mature tomato quality degradation

    Propagation of THz irradiation energy through aqueous layers: Demolition of actin filaments in living cells

    Get PDF
    テラヘルツ光照射による細胞内タンパク質重合体の断片化を解明 --THzパルス光が衝撃波として生体内部へ到達する可能性--. 京都大学プレスリリース. 2020-06-03.The effect of terahertz (THz) radiation on deep tissues of human body has been considered negligible due to strong absorption by water molecules. However, we observed that the energy of THz pulses transmits a millimeter thick in the aqueous solution, possibly as a shockwave, and demolishes actin filaments. Collapse of actin filament induced by THz irradiation was also observed in the living cells under an aqueous medium. We also confirmed that the viability of the cell was not affected under the exposure of THz pulses. The potential of THz waves as an invasive method to alter protein structure in the living cells is demonstrated

    Actin polymerization is activated by terahertz irradiation

    Get PDF
    Polymerization of monomeric actin into filaments has pivotal roles in cell motility, growth, differentiation, and gene expression. Therefore, techniques of manipulating actin polymerization, including actin-binding chemicals, have been developed for understanding and regulating multiple biological functions. Here, we demonstrate that irradiation with terahertz (THz) waves is a novel method of modulating actin polymerization. When actin polymerization reaction is performed under irradiation with 0.46 THz waves generated by a Gyrotron, actin polymerization was observed to be activated by monitoring the fluorescence of pyrene actin fluorophores. We also observed the number of actin filaments under a fluorescence microscope using the polymerized actin probe SiR-actin. The number of actin filaments was increased by 3.5-fold after THz irradiation for 20 min. When the THz irradiation was applied to a steady-state actin solution, in which elongation and depolymerization of actin filaments were equilibrated, increased actin polymerization was observed, suggesting that the THz irradiation activates actin polymerization, at least in the elongation process. These results suggest that THz waves could be applied for manipulating biomolecules and cells

    Propagation of THz irradiation energy through aqueous layers: Demolition of actin filaments in living cells

    No full text
    The effect of terahertz (THz) radiation on deep tissues of human body has been considered negligible due to strong absorption by water molecules. However, we observed that the energy of THz pulses transmits a millimeter thick in the aqueous solution, possibly as a shockwave, and demolishes actin filaments. Collapse of actin filament induced by THz irradiation was also observed in the living cells under an aqueous medium. We also confirmed that the viability of the cell was not affected under the exposure of THz pulses. The potential of THz waves as an invasive method to alter protein structure in the living cells is demonstrated
    corecore