22 research outputs found

    Landau damping: instability mechanism of superfluid Bose gases moving in optical lattices

    Full text link
    We investigate Landau damping of Bogoliubov excitations in a dilute Bose gas moving in an optical lattice at finite temperatures. Using a 1D tight-binding model, we explicitly obtain the Landau damping rate, the sign of which determines the stability of the condensate. We find that the sign changes at a certain condensate velocity, which is exactly the same as the critical velocity determined by the Landau criterion of superfluidity. This coincidence of the critical velocities reveals the microscopic mechanism of the Landau instability. This instability mechanism is also consistent with the recent experiment suggesting that a thermal cloud plays a crucial role in breakdown of superfluids, since the thermal cloud is also vital in the Landau damping process. We also examine the possibility of simultaneous disappearance of all damping processes.Comment: 9 pages, 5 figure

    Coarse-Grained Finite-Temperature Theory for the Condensate in Optical Lattices

    Full text link
    In this work, we derive a coarse-grained finite-temperature theory for a Bose condensate in a one-dimensional optical lattice, in addition to a confining harmonic trap potential. We start from a two-particle irreducible (2PI) effective action on the Schwinger-Keldysh closed-time contour path. In principle, this action involves all information of equilibrium and non-equilibrium properties of the condensate and noncondensate atoms. By assuming an ansatz for the variational function, i.e., the condensate order parameter in an effective action, we derive a coarse-grained effective action, which describes the dynamics on the length scale much longer than a lattice constant. Using the variational principle, coarse-grained equations of motion for the condensate variables are obtained. These equations include a dissipative term due to collisions between condensate and noncondensate atoms, as well as noncondensate mean-field. To illustrate the usefulness of our formalism, we discuss a Landau instability of the condensate in optical lattices by using the coarse-grained generalized Gross-Pitaevskii hydrodynamics. We found that the collisional damping rate due to collisions between the condensate and noncondensate atoms changes sign when the condensate velocity exceeds a renormalized sound velocity, leading to a Landau instability consistent with the Landau criterion. Our results in this work give an insight into the microscopic origin of the Landau instability.Comment: 38 pages, 2 figures. Submitted to Journal of Low Temperature Physic

    Landau and dynamical instabilities of Bose-Einstein condensates with superfluid flow in a Kronig-Penney potential

    Full text link
    We study the elementary excitations of Bose-Einstein condensates in a one-dimensional periodic potential and discuss the stability of superfluid flow based on the Kronig-Penney model. We analytically solve the Bogoliubov equations and calculate the excitation spectrum. The Landau and dynamical instabilities occur in the first condensate band when the superfluid velocity exceeds certain critical values, which agrees with the result of condensates in a sinusoidal potential. It is found that the onset of the Landau instability coincides with the point where the perfect transmission of low-energy excitations is forbidden, while the dynamical instability occurs when the effective mass is negative. It is well known that the condensate band has a peculiar structure called swallowtail when the periodic potential is shallow compared to the mean field energy. We find that the upper side of the swallowtail is dynamically unstable although the excitations have the linear dispersion reflecting the positive effective mass.Comment: 6 pages, 2 figures, Proceedings of the International Symposium on Quantum Fluids and Solids (QFS2006

    Raman Spectroscopy of Mott insulator states in optical lattices

    Full text link
    We propose and analyse a Raman spectroscopy technique for probing the properties of quantum degenerate bosons in the ground band of an optical lattice. Our formalism describes excitations to higher vibrational bands and is valid for deep lattices where a tight-binding approach can be applied to the describe the initial state of the system. In sufficiently deep lattices, localized states in higher vibrational bands play an important role in the system response, and shifts in resonant frequency of excitation are sensitive to the number of particles per site. We present numerical results of this formalism applied to the case of a uniform lattice deep in the Mott insulator regime.Comment: 10 pages, 3 figure

    Southern Highlands Province: Text summaries, maps, code lists and village identification

    No full text
    The major purpose of the Papua New Guinea Agricultural Systems Project is to produce information on small holder (subsistence) agriculture at provincial and national levels (Allen et al 1995). Information was collected by field observation, interviews with villagers and reference to published and unpublished documents. Methods are described by Bourke et al. (1993). This Working Paper contains a written summary of the information on the Agricultural Systems in this Province, maps of the location of agriculture systems, a complete listing of all information in the database in coded form, and lists of villages with National Population Census codes, indexed by agricultural systems. This information is available as a map-linked database (GIS) suitable for use on a personal computer in ESRI and MapInfo formats. An Agricultural System is identified when a set of similar agricultural crops and practices occur within a defined area. Six criteria are used to distinguish one system from another: 1. Fallow type (the vegetation which is cleared from a garden site before cultivation). 2. Fallow period (the length of time a garden site is left unused between cultivations). 3. Cultivation intensity (the number of consecutive crops planted before fallow). 4. The staple, or most important, crops. 5. Garden and crop segregation (the extent to which crops are planted in separate gardens; in separate areas within a garden; or are planted sequentially). 6. Soil fertility maintenance techniques (other than natural regrowth fallows). Where one or more of these factors differs significantly and the differences can be mapped, then a separate system is distinguished. Where variation occurs, but is not able to be mapped at 1:500 000 scale because the areas in which the variation occurs are too small or are widely dispersed within the larger system, a subsystem is identified. Subsystems within an Agricultural System are allocated a separate record in the database, identified by the Agricultural System number and a subsystem number. Sago is a widespread staple food in lowland Papua New Guinea. Sago is produced from palms which are not grown in gardens. Most of the criteria above cannot be applied. In this case, systems are differentiated on the basis of the staple crops only. The Papua New Guinea Resource Information System (PNGRIS) is a GIS which contains information on the natural resources of PNG (Bellamy 1986). PNGRIS contains no information on agricultural practices, other than an assessment of land use intensity based on air photograph interpretation by Saunders (1993. The Agricultural Systems Project is designed to provide detailed information on agricultural practices and cropping patterns as part of an upgraded PNGRIS geographical information system. For this reason the Agricultural Systems database contains almost no information on the environmental settings of the systems, except for altitude and slope. The layout of the text descriptions, the database code files and the village lists are similar to PNGRIS formats (Cuddy 1987). The mapping of Agricultural Systems has been carried out on the same map base and scale as PNGRIS (Tactical Pilotage Charts, 1:500 000). Agricultural Systems were mapped within the areas of agricultural land use established by Saunders (1993) from aerial photography. Except where specifically noted, Agricultural Systems boundaries have been mapped without reference to PNGRIS Resource Mapping Unit (RMU) boundaries. Agricultural Systems are defined at the level of the Province (following PNGRIS) but their wider distribution is recognised in the database by cross-referencing systems which cross provincial borders. A preliminary view of the relationships between PNGRIS RMUs and the Agricultural Systems in this Province can be obtained from the listing of villages by Agricultural System, where RMU numbers are appended. Allen, B. J., R. M. Bourke and R. L. Hide 1995. The sustainability of Papua New Guinea agricultural systems: the conceptual background. Global Environmental Change 5(4): 297-312. Bourke, R. M., R. L. Hide, B. J. Allen, R. Grau, G. S. Humphreys and H. C. Brookfield 1993. Mapping agricultural systems in Papua New Guinea. Population Family Health and Development. T. Taufa and C. Bass. University of Papua New Guinea Press, Port Moresby: 205-224. Bellamy, J. A. and J. R. McAlpine 1995. Papua New Guinea Inventory of Natural Resources, Population Distribution and Land Use Handbook. Commonwealth Scientific and Industrial Research Organisation for the Australian Agency for International Development. PNGRIS Publication No. 6, Canberra. Cuddy, S. M. 1987. Papua New Guinea Inventory of Natural Resources, Population Distribution and Land Use: Code Files Part 1 Natural Resources. Division of Water and Land Resources, Commonwealth Scientific and Industrial Research Organisation and Land Utilization Section, Department of Primary Industry, Papua New Guinea, Canberra

    Evidence for line width and carrier screening effects on excitonic valley relaxation in 2D semiconductors

    No full text
    10.1038/s41467-018-04988-xNature Communications91259
    corecore