108 research outputs found
Evaluating the Assumptions of Surface Reflectance and Aerosol Type Selection Within the MODIS Aerosol Retrieval Over Land: The Problem of Dust Type Selection
Aerosol Optical Depth (AOD) and Angstrom exponent (AE) values derived with the MODIS retrieval algorithm over land (Collection 5) are compared with ground based sun photometer measurements at eleven sites spanning the globe. Although, in general, total AOD compares well at these sites (R2 values generally over 0.8), there are cases (from 2 to 67% of the measurements depending on the site) where MODIS clearly retrieves the wrong spectral dependence, and hence, an unrealistic AE value. Some of these poor AE retrievals are due to the aerosol signal being too small (total AOD<0.3) but in other cases the AOD should have been high enough to derive accurate AE. However, in these cases, MODIS indicates AE values close to 0.6 and zero fine model weighting (FMW), i.e. dust model provides the best fitting to the MODIS observed reflectance. Yet, according to evidence from the collocated sun photometer measurements and back-trajectory analyses, there should be no dust present. This indicates that the assumptions about aerosol model and surface properties made by the MODIS algorithm may have been incorrect. Here we focus on problems related to parameterization of the land-surface optical properties in the algorithm, in particular the relationship between the surface reflectance at 660 and 2130 nm
Recommended from our members
Driving factors of aerosol properties over the foothills of central Himalayas based on 8.5 years continuous measurements
This study presents analysis of in situ measurements conducted over the period 2005â2014 in the Indian Himalayas to give a thorough overview of the factors and causes that drive aerosol properties. Aerosol extensive properties (namely, particle number concentration, scattering coefficient, equivalent black carbon, PM2.5, and PM10) have 1.5â2 times higher values in the early to late afternoon than during the night, and a strong seasonality. The interannual variability is ±20% for both PM2.5 and total particle number concentration. Analysis of the data shows statistically significant decreasing trends of â2.3 ÎŒg mâ3 yearâ1 and â2.7 ÎŒg mâ3 yearâ1 for PM2.5 and PM10, respectively, over the study period. The mountainous terrain site (Mukteshwar, MUK) is primarily under the influence of air from the plains. This is due to convective transport processes that are enhanced by local and mesoscale topography, leading to pronounced valley/mountain winds and consequently to atmospheric boundary layer air lifting from the plains below. The transport from plains is evident in seasonalâdiurnal patterns observed at MUK. The timing of the patterns corresponds with changes in turbulence and water vapor (q). According to our analysis, using these as proxies is a viable method for examining boundary layer influence in the absence of direct atmospheric boundary layer height measurements. Comparing the measurements with climate models shows that even regional climate models have problems capturing the orographic influence accurately at MUK, highlighting the importance of longâterm direct measurements at multiple points to understand aerosol behavior in mountainous areas
Recommended from our members
One year of Raman lidar observations of free-tropospheric aerosol layers over South Africa
Raman lidar data obtained over a 1 year period has been analysed in relation to aerosol layers in the free troposphere over the Highveld in South Africa. In total, 375 layers were observed above the boundary layer during the period 30 January 2010 to 31 January 2011. The seasonal behaviour of aerosol layer geometrical characteristics, as well as intensive and extensive optical properties were studied. The highest centre heights of free-tropospheric layers were observed during the South African spring (2520 ± 970 m a.g.l., also elsewhere). The geometrical layer depth was found to be maximum during spring, while it did not show any significant difference for the rest of the seasons. The variability of the analysed intensive and extensive optical properties was high during all seasons. Layers were observed at a mean centre height of 2100 ± 1000 m with an average lidar ratio of 67 ± 25 sr (mean value with 1 standard deviation) at 355 nm and a mean extinction-related Ă
ngström exponent of 1.9 ± 0.8 between 355 and 532 nm during the period under study. Except for the intensive biomass burning period from August to October, the lidar ratios and Ă
ngström exponents are within the range of previous observations for urban/industrial aerosols. During Southern Hemispheric spring, the biomass burning activity is clearly reflected in the optical properties of the observed free-tropospheric layers. Specifically, lidar ratios at 355 nm were 89 ± 21, 57 ± 20, 59 ± 22 and 65 ± 23 sr during spring (SeptemberâNovember), summer (DecemberâFebruary), autumn (MarchâMay) and winter (JuneâAugust), respectively. The extinction-related Ă
ngström exponents between 355 and 532 nm measured during spring, summer, autumn and winter were 1.8 ± 0.6, 2.4 ± 0.9, 1.8 ± 0.9 and 1.8 ± 0.6, respectively. The mean columnar aerosol optical depth (AOD) obtained from lidar measurements was found to be 0.46 ± 0.35 at 355 nm and 0.25 ± 0.2 at 532 nm. The contribution of free-tropospheric aerosols on the AOD had a wide range of values with a mean contribution of 46%
Recommended from our members
Characterization of satellite-based proxies for estimating nucleation mode particles over South Africa
Proxies for estimating nucleation mode number concentrations and further simplification for their use with satellite data have been presented in Kulmala et al. (2011). In this paper we discuss the underlying assumptions for these simplifications and evaluate the resulting proxies over an area in South Africa based on a comparison with a suite of ground-based measurements available from four different stations. The proxies are formulated in terms of sources (concentrations of precursor gases (NO2 and SO2) and UVB radiation intensity near the surface) and a sink term related to removal of the precursor gases due to condensation on pre-existing aerosols. A-Train satellite data are used as input to compute proxies. Both the input data and the resulting proxies are compared with those obtained from ground-based measurements. In particular, a detailed study is presented on the substitution of the local condensation sink (CS) with satellite aerosol optical depth (AOD), which is a column-integrated parameter. One of the main factors affecting the disagreement between CS and AOD is the presence of elevated aerosol layers. Overall, the correlation between proxies calculated from the in situ data and observed nucleation mode particle number concentrations (Nnuc) remained low. At the time of the satellite overpass (13:00â14:00 LT) the highest correlation is observed for SO2/CS (R2 = 0.2). However, when the proxies are calculated using satellite data, only NO2/AOD showed some correlation with Nnuc (R2 = 0.2). This can be explained by the relatively high uncertainties related especially to the satellite SO2 columns and by the positive correlation that is observed between the ground-based SO2 and NO2 concentrations. In fact, results show that the satellite NO2 columns compare better with in situ SO2 concentration than the satellite SO2 column. Despite the high uncertainties related to the proxies calculated using satellite data, the proxies calculated from the in situ data did not better predict Nnuc. Hence, overall improvements in the formulation of the proxies are needed
Recommended from our members
Observing wind, aerosol particles, clouds and precipitation: Finland's new ground-based remote-sensing network
The Finnish Meteorological Institute, in collaboration with the University of Helsinki, has established a new ground-based remote-sensing network in Finland. The network consists of five topographically, ecologically and climatically different sites distributed from southern to northern Finland. The main goal of the network is to monitor air pollution and boundary layer properties in near real time, with a Doppler lidar and ceilometer at each site. In addition to these operational tasks, two sites are members of the Aerosols, Clouds and Trace gases Research InfraStructure Network (ACTRIS); a Ka band cloud radar at SodankylĂ€ will provide cloud retrievals within CloudNet, and a multi-wavelength Raman lidar, PollyXT (POrtabLe Lidar sYstem eXTended), in Kuopio provides optical and microphysical aerosol properties through EARLINET (the European Aerosol Research Lidar Network). Three C-band weather radars are located in the Helsinki metropolitan area and are deployed for operational and research applications. We performed two inter-comparison campaigns to investigate the Doppler lidar performance, compare the backscatter signal and wind profiles, and to optimize the lidar sensitivity through adjusting the telescope focus length and data-integration time to ensure sufficient signal-to-noise ratio (SNR) in low-aerosol-content environments. In terms of statistical characterization, the wind-profile comparison showed good agreement between different lidars. Initially, there was a discrepancy in the SNR and attenuated backscatter coefficient profiles which arose from an incorrectly reported telescope focus setting from one instrument, together with the need to calibrate. After diagnosing the true telescope focus length, calculating a new attenuated backscatter coefficient profile with the new telescope function and taking into account calibration, the resulting attenuated backscatter profiles all showed good agreement with each other. It was thought that harsh Finnish winters could pose problems, but, due to the built-in heating systems, low ambient temperatures had no, or only a minor, impact on the lidar operation â including scanning-head motion. However, accumulation of snow and ice on the lens has been observed, which can lead to the formation of a water/ice layer thus attenuating the signal inconsistently. Thus, care must be taken to ensure continuous snow removal
Recommended from our members
BAECC: a field campaign to elucidate the impact of Biogenic Aerosols on Clouds and Climate
Observations obtained during an 8-month deployment of AMF2 in a boreal environment in HyytiĂ€lĂ€, Finland, and the 20-year comprehensive in-situ data from SMEAR-II station enable the characterization of biogenic aerosol, clouds and precipitation, and their interactions. During âBiogenic Aerosols - Effects on Clouds and Climate (BAECC)â, the U.S. Department of Energyâs Atmospheric Radiation Measurement (ARM) Program deployed the ARM 2nd Mobile Facility (AMF2) to HyytiĂ€lĂ€, Finland, for an 8-month intensive measurement campaign from February to September 2014. The primary research goal is to understand the role of biogenic aerosols in cloud formation. HyytiĂ€lĂ€ is host to SMEAR-II (Station for Measuring Forest Ecosystem-Atmosphere Relations), one of the worldâs most comprehensive surface in-situ observation sites in a boreal forest environment. The station has been measuring atmospheric aerosols, biogenic emissions and an extensive suite of parameters relevant to atmosphere-biosphere interactions continuously since 1996. Combining vertical profiles from AMF2 with surface-based in-situ SMEAR-II observations allow the processes at the surface to be directly related to processes occurring throughout the entire tropospheric column. Together with the inclusion of extensive surface precipitation measurements, and intensive observation periods involving aircraft flights and novel radiosonde launches, the complementary observations provide a unique opportunity for investigating aerosol-cloud interactions, and cloud-to-precipitation processes, in a boreal environment. The BAECC dataset provides opportunities for evaluating and improving models of aerosol sources and transport, cloud microphysical processes, and boundary-layer structures. In addition, numerical models are being used to bridge the gap between surface-based and tropospheric observations
Effect of the summer monsoon on aerosols at two measurement stations in Northern India â Part 2: Physical and optical properties
Aerosol physical and optical properties were measured at two locations in northern India. The first measurement station was a background site in Mukteshwar, about 350 km northeast of New Delhi, in the foothills of the Indian Himalayas, with data from 2006 to 2009. The second measurement site was located in Gual Pahari, about 25 km south of New Delhi, with data from 2008 to 2009. At both stations, the average aerosol concentrations during the monsoon were decreased by 40â75 % compared to the pre-monsoon average concentrations. The decrease varied with the total local rainfall. In Mukteshwar, the monsoon season removed particles from all size classes, due to a combination of rain scavenging and activation to cloud and mountain fog droplets. The scavenging by rain is least effective for the size range of the accumulation mode particles. In Gual Pahari, this was the only major wet removal mechanism and, as a result, the accumulation mode particles were less effectively removed. Aerosol concentrations during the early monsoon were found to be affected by mineral dust which in Gual Pahari was observed as an increased particle volume at a diameter around 3â4 ÎŒm. The single scattering albedo varied from 0.73 to 0.93 during the monsoon season, being slightly lower in Gual Pahari than in Mukteshwar. This is due to the fact that Gual Pahari resided closer to high anthropogenic black carbon emissions. As the absorbing particles are typically in the accumulation mode, they were not effectively removed by rain scavenging. The aerosol columnar properties, which were measured in Gual Pahari, showed a somewhat different seasonal behaviour compared to the surface measurements, with the aerosol optical depth increasing to an annual maximum in the early monsoon season
Understanding How Social Entrepreneurs Fit into the Tourism Discourse
This chapter discusses how social entrepreneurs fit into the existing tourism discourse. It examines four areas of literature in particular, tourism entrepreneurs, sustainability, destination development and intrapreneurship, and analyzes how introducing the concept of social entrepreneurs into these discussions is useful, and contributes to our understanding. Furthermore the paper illustrates that as social entrepreneurs are relevant to a broad range of issues in the tourism literature this should prevent the development of research silos where social entrepreneurship scholars seek out their own vein of research. The nexus of common ground and interests, as displayed in this chapter, should enhance the development of research, thought and understanding of social entrepreneurs within the field as a whole
The key argument is that research on social entrepreneurs is not just relevant for those interested in entrepreneurs it also effects our thinking on issues such as destination development, relationships between stakeholders, tourism policy and sustainability. The chapter concludes with a wide range of questions for further research
Low hygroscopic scattering enhancement of boreal aerosol and the implications for a columnar optical closure study
Ambient aerosol particles can take up water and thus change their optical properties depending on the hygroscopicity and the relative humidity (RH) of the surrounding air. Knowledge of the hygroscopicity effect is of crucial importance for radiative forcing calculations and is also needed for the comparison or validation of remote sensing or model results with in situ measurements. Specifically, particle light scattering depends on RH and can be described by the scattering enhancement factor f(RH), which is defined as the particle light scattering coefficient at defined RH divided by its dry value (RH <30-40 %). Here, we present results of an intensive field campaign carried out in summer 2013 at the SMEAR II station at Hyytiala, Finland. Ground-based and airborne measurements of aerosol optical, chemical and microphysical properties were conducted. The f(RH) measured at ground level by a humidified nephelometer is found to be generally lower (e.g. 1.63 +/- 0.22 at RH = 85% and lambda = 525 nm) than observed at other European sites. One reason is the high organic mass fraction of the aerosol encountered at Hyytiala to which f(RH) is clearly anti-correlated (R-2 approximate to 0.8). A simplified parametrization of f(RH) based on the measured chemical mass fraction can therefore be derived for this aerosol type. A trajectory analysis revealed that elevated values of f(RH) and the corresponding elevated inorganic mass fraction are partially caused by transported hygroscopic sea spray particles. An optical closure study shows the consistency of the ground-based in situ measurements. Our measurements allow to determine the ambient particle light extinction coefficient using the measured f(RH). By combining the ground-based measurements with intensive aircraft measurements of the particle number size distribution and ambient RH, columnar values of the particle extinction coefficient are determined and compared to columnar measurements of a co-located AERONET sun photometer. The water uptake is found to be of minor importance for the column-averaged properties due to the low particle hygroscopicity and the low RH during the daytime of the summer months. The in situ derived aerosol optical depths (AOD) clearly correlate with directly measured values of the sun photometer but are substantially lower compared to the directly measured values (factor of similar to 2-3). The comparison degrades for longer wavelengths. The disagreement between in situ derived and directly measured AOD is hypothesized to originate from losses of coarse and fine mode particles through dry deposition within the canopy and losses in the in situ sampling lines. In addition, elevated aerosol layers (above 3 km) from long-range transport were observed using an aerosol lidar at Kuopio, Finland, about 200 km east-northeast of Hyytiala. These elevated layers further explain parts of the disagreement.Peer reviewe
- âŠ