113 research outputs found

    Positive Effect of Propolis on Free Radicals in Burn Wounds

    Get PDF
    Concentration and properties of free radicals in the burn wounds treated with propolis were examined by the use of electron paramagnetic resonance spectroscopy. Magnetic spin-spin interactions and complex free radicals structures in wound beds were studied. The results were compared to those obtained for silver sulphadiazine used as a standard pharmaceutical agent. The changes of free radicals in the matrix of injury with time of exposition on these substances were tested. The aim of this study was to check the hypothesis about the best influence of propolis on the burn wounds healing. It was confirmed that a relatively lower concentration of free radicals exists in the burn wounds treated with propolis. The homogeneously broadened spectra and a complex free radical system characterize the tested tissue samples. The fastening of spin-lattice relaxation processes in the matrix of injury after treatment with propolis and silver sulphadiazine was observed. Practical usefulness of electron paramagnetic resonance spectroscopy in alternative medicine was proved

    Bee Pollen: Chemical Composition and Therapeutic Application

    Get PDF
    Bee pollen is a valuable apitherapeutic product greatly appreciated by the natural medicine because of its potential medical and nutritional applications. It demonstrates a series of actions such as antifungal, antimicrobial, antiviral, anti-inflammatory, hepatoprotective, anticancer immunostimulating, and local analgesic. Its radical scavenging potential has also been reported. Beneficial properties of bee pollen and the validity for their therapeutic use in various pathological condition have been discussed in this study and with the currently known mechanisms, by which bee pollen modulates burn wound healing process

    Propolis Induces Chondroitin/Dermatan Sulphate and Hyaluronic Acid Accumulation in the Skin of Burned Wound

    Get PDF
    Changes in extracellular matrix glycosaminoglycans during the wound repair allowed us to apply the burn model in which therapeutic efficacy of propolis and silver sulfadiazine was compared. Burns were inflicted on four pigs. Glycosaminoglycans isolated from healthy and burned skin were quantified using a hexuronic acid assay, electrophoretic fractionation, and densitometric analyses. Using the reverse-phase HPLC the profile of sulfated disaccharides released by chondroitinase ABC from chondroitin/dermatan sulfates was estimated. Chondroitin/dermatan sulfates and hyaluronic acid were found in all samples. Propolis stimulated significant changes in the content of particular glycosaminoglycan types during burn healing. Glycosaminoglycans alterations after silver sulfadiazine application were less expressed. Propolis maintained high contribution of 4-O-sulfated disaccharides to chondroitin/dermatan sulfates structure and low level of 6-O-sulfated ones throughout the observed period of healing. Propolis led to preservation of significant contribution of disulfated disaccharides especially 2,4-O-disulfated ones to chondroitin sulfates/dermatan sulfates structure throughout the observed period of healing. Our findings demonstrate that propolis accelerates the burned tissue repair by stimulation of the wound bed glycosaminoglycan accumulation needed for granulation, tissue growth, and wound closure. Moreover, propolis accelerates chondroitin/dermatan sulfates structure modification responsible for binding growth factors playing the crucial role in the tissue repair

    Application of Numerical Analysis of the Shape of Electron Paramagnetic Resonance Spectra for Determination of the Number of Different Groups of Radicals in the Burn Wounds

    Get PDF
    Background. The evidence exists that radicals are crucial agents necessary for the wound regeneration helping to enhance the repair process. Materials and methods. The lineshape of the electron paramagnetic resonance (EPR) spectra of the burn wounds measured with the low microwave power (2.2 mW) was numerically analyzed. The experimental spectra were fitted by the sum of two and three lines. Results. The number of the lines in the EPR spectrum corresponded to the number of different groups of radicals in the natural samples after thermal treatment. The component lines were described by Gaussian and Lorentzian functions. The spectra of the burn wounds were superposition of three lines different in shape and in linewidths. The best fitting was obtained for the sum of broad Gaussian, broad Lorentzian, and narrow Lorentzian lines. Dipolar interactions between the unpaired electrons widened the broad Gaussian and broad Lorentzian lines. Radicals with the narrow Lorentzian lines existed mainly in the tested samples. Conclusions. The spectral shape analysis may be proposed as a useful method for determining the number of different groups of radicals in the burn wounds

    The Role of the Extracellular Matrix Components in Cutaneous Wound Healing

    No full text
    Wound healing is the physiologic response to tissue trauma proceeding as a complex pathway of biochemical reactions and cellular events, secreted growth factors, and cytokines. Extracellular matrix constituents are essential components of the wound repair phenomenon. Firstly, they create a provisional matrix, providing a structural integrity of matrix during each stage of healing process. Secondly, matrix molecules regulate cellular functions, mediate the cell-cell and cell-matrix interactions, and serve as a reservoir and modulator of cytokines and growth factors’ action. Currently known mechanisms, by which extracellular matrix components modulate each stage of the process of soft tissue remodeling after injury, have been discussed

    Diverse Roles of Heparan Sulfate and Heparin in Wound Repair

    No full text
    Heparan sulfate (HS) and heparin (Hp) are linear polysaccharide chains composed of repeating (1→4) linked pyrosulfuric acid and 2-amino-2-deoxy glucopyranose (glucosamine) residue. Mentioned glycosaminoglycans chains are covalently O-linked to serine residues within the core proteins creating heparan sulfate/heparin proteoglycans (HSPG). The latter ones participate in many physiological and pathological phenomena impacting both the plethora of ligands such as cytokines, growth factors, and adhesion molecules and the variety of the ECM constituents. Moreover, HS/Hp determine the effective wound healing process. Initial growth of HS and Hp amount is pivotal during the early phase of tissue repair; however heparan sulfate and heparin also participate in further stages of tissue regeneration

    Diverse Roles of Heparan Sulfate and Heparin in Wound Repair

    No full text
    Heparan sulfate (HS) and heparin (Hp) are linear polysaccharide chains composed of repeating (1 → 4) linked pyrosulfuric acid and 2-amino-2-deoxy glucopyranose (glucosamine) residue. Mentioned glycosaminoglycans chains are covalently O-linked to serine residues within the core proteins creating heparan sulfate/heparin proteoglycans (HSPG). The latter ones participate in many physiological and pathological phenomena impacting both the plethora of ligands such as cytokines, growth factors, and adhesion molecules and the variety of the ECM constituents. Moreover, HS/Hp determine the effective wound healing process. Initial growth of HS and Hp amount is pivotal during the early phase of tissue repair; however heparan sulfate and heparin also participate in further stages of tissue regeneration

    Bee Venom in Wound Healing

    No full text
    Bee venom (BV), also known as api-toxin, is widely used in the treatment of different inflammatory diseases such as rheumatoid arthritis or multiple sclerosis. It is also known that BV can improve the wound healing process. BV plays a crucial role in the modulation of the different phases of wound repair. It possesses anti-inflammatory, antioxidant, antifungal, antiviral, antimicrobial and analgesic properties, all of which have a positive impact on the wound healing process. The mentioned process consists of four phases, i.e., hemostasis, inflammation, proliferation and remodeling. The impaired wound healing process constitutes a significant problem especially in diabetic patients, due to hypoxia state. It had been found that BV accelerated the wound healing in diabetic patients as well as in laboratory animals by impairing the caspase-3, caspase-8 and caspase-9 activity. Moreover, the activity of BV in wound healing is associated with regulating the expression of transforming growth factor (TGF-β1), vascular endothelial growth factor and increased collagen type I. BV stimulates the proliferation and migration of human epidermal keratinocytes and fibroblasts. In combination with polyvinyl alcohol and chitosan, BV significantly accelerates the wound healing process, increasing the hydroxyproline and glutathione and lowering the IL-6 level in wound tissues. The effect of BV on the wounds has been proved by numerous studies, which revealed that BV in the wound healing process brings about a curative effect and could be applied as a new potential treatment for wound repair. However, therapy with bee venom may induce allergic reactions, so it is necessary to assess the existence of the patient’s hypersensitivity to apitoxin before treatment

    The Diagnostic Usefulness of Circulating Profile of Extracellular Matrix Components: Sulfated Glycosaminoglycans (sGAG), Hyaluronan (HA) and Extracellular Part of Syndecan-1 (sCD138) in Patients with Crohn’s Disease and Ulcerative Colitis

    No full text
    The described research focused on the diagnostic usefulness of sulfated glycosaminoglycans (sGAG), hyaluronan (HA), and extracellular part of syndecan-1 (sCD138) as new markers related to extracellular matrix (ECM) remodeling in the intestine during the two most common forms of inflammatory bowel diseases (IBD), i.e., ulcerative colitis (UC) and Crohn’ disease (CD). Inflammatory markers belonging to ECM components were assessed in serum of patients with IBD using an immunoenzymatic method (HA and sCD138) and a method based on the reaction with dimethylmethylene blue (sulfated GAG). Measurements were carried out twice: at baseline and after one year of therapy with prednisone (patients with CD) or adalimumab (patients with UC). No quantitative changes were observed in serum sGAG, HA, and sCD138 concentrations between patients newly diagnosed with CD and the healthy group. In the case of patients with UC, the parameter which significantly differentiated healthy subjects and patients with IBD before biological therapy was HA. Significant correlation between serum HA level and inflammation activity, expressed as Mayo score, was also observed in patients with UC. Moreover, the obtained results have confirmed that steroid therapy with prednisone significantly influenced the circulating profile of all examined ECM components (sGAG, HA, and sCD138), whereas adalimumab therapy in patients with UC led to a significant change in only circulating sGAG levels. Moreover, the significant differences in serum HA levels between patients with UC and CD indicate that quantification of circulating HA may be useful in the differential diagnosis of CD and UC
    • 

    corecore