183 research outputs found

    Corynebacterium ulcerans 0102 carries the gene encoding diphtheria toxin on a prophage different from the C. diphtheriae NCTC 13129 prophage

    Get PDF
    BACKGROUND: Corynebacterium ulcerans can cause a diphtheria-like illness, especially when the bacterium is lysogenized with a tox gene-carrying bacteriophage that produces diphtheria toxin. Acquisition of toxigenicity upon phage lysogenization is a common feature of C. ulcerans and C. diphtheriae. However, because of a lack of C. ulcerans genome information, a detailed comparison of prophages has not been possible between these two clinically important and closely related bacterial species. RESULTS: We determined the whole genome sequence of the toxigenic C. ulcerans 0102 isolated in Japan. The genomic sequence showed a striking similarity with that of Corynebacterium pseudotuberculosis and, to a lesser extent, with that of C. diphtheriae. The 0102 genome contained three distinct prophages. One of these, ΦCULC0102-I, was a tox-positive prophage containing genes in the same structural order as for tox-positive C. diphtheriae prophages. However, the primary structures of the individual genes involved in the phage machinery showed little homology between the two counterparts. CONCLUSION: Taken together, these results suggest that the tox-positive prophage in this strain of C. ulcerans has a distinct origin from that of C. diphtheriae NCTC 13129

    CO2-rich komatiitic melt inclusions in Cr-spinels within beach sand from Gorgona Island, Colombia

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 288 (2009): 33-43, doi:10.1016/j.epsl.2009.09.005.The volatile content of komatiite is a key to constrain the thermal and chemical evolution of the deep Earth. We report the volatile contents with major and trace element compositions of ~ 80 melt inclusions in chromian spinels (Cr-spinels) from beach sands on Gorgona Island, Colombia. Gorgona Island is a ~ 90 Ma volcanic island, where picrites and the youngest komatiites known on the Earth are present. Melt inclusions are classified into three types on the basis of their host Cr-spinel compositions: low Ti (P type), high Ti with high Cr# (K1 type) and high Ti with low Cr# (K2 type). Chemical variations of melt inclusions in the Cr-spinels cover all of the island's lava types. P-type inclusions mainly occur in the picrites, K1-type in high-TiO2 komatiites (some enriched basalts: E-basalts) and K2-type in low-TiO2 komatiites. The H2O and CO2 contents of melt inclusions within Cr-spinels from the beach sand are highly variable (H2O: 0.03–0.9 wt.%; CO2: 40–4000 ppm). Evaluation of volatile content is not entirely successful because of compositional alterations of the original melt by degassing, seawater/brine assimilation and post-entrapment modification of certain elements and volatiles. However, the occurrence of many melt inclusions with low H2O/K2O ratios indicates that H2O/K2O of Gorgona komatiite is not much different from that of modern mid-oceanic ridge basalt (MORB) or oceanic island basalt. Trend of CO2/Nb and Zr/Y ratios, accounted for by two-component mixing between the least degassed primary komatiite and low-CO2/Nb evolved basalt, allow us to estimate a primary CO2/Nb ratio of 4000 ± 2200 or a CO2 content of 0.16 ± 0.09 wt.%. The determined CO2/Nb ratio is unusually high, compared to that of MORB (530). Although the presence of CO2 in the Gorgona komatiite does not affect the magma generation temperature, CO2 degassing may have contributed to the eruption of high-density magmas. High CO2/Nb and the relatively anhydrous nature of Gorgona komatiite provide possible resolution to one aspect of the hydrous komatiite debate.This work is financially supported by grants from the Japan Society for the Promotion of Science

    Rock magnetism of tiny exsolved magnetite in plagioclase from a Paleoarchean granitoid in the Pilbara craton

    Get PDF
    金沢大学理工研究域地球社会基盤学系Granitoids are widespread in Precambrian terranes as well as the Phanerozoic orogenic belts, but they have garnered little attention in paleomagnetic studies, because granitoids often contain abundant coarse-grained, magnetically unstable oxides. In this study, the first example of tiny, needle-shaped, exsolved oxides in plagioclase in a Paleoarchean granitoid is reported. The magnetic properties of single plagioclase crystals with the exsolved oxide inclusions have been studied to determine their paleomagnetic recording fidelity. Demagnetization experiments and hysteresis parameters indicate that the oxide inclusions are near stoichiometric magnetite and magnetically very stable. First-order reversal curve (FORC) diagrams reveal negligible magnetostatic interactions. Minimal interactions are also reflected by very efficient acquisition of anhysteretic remanent magnetization. Single plagioclase crystals exhibit strong magnetic remanence anisotropies, which require corrections to their paleodirectional and paleointensity data. Nonetheless, quantitative consideration of anisotropy tensors of the single plagioclase crystals indicates that the bias can be mitigated by properly averaging data from a few tens of single crystals. From the nonlinear thermoremanence acquisition of the plagioclase crystals, we estimate that the plagioclase crystals can reconstruct paleointensity up to 50 μT. Local metamorphic condition suggests that those magnetite may carry remanence of ∼3.2 to 3.3 Ga. We suggest that exsolved magnetite in granitoids is potentially a suitable target for the study of the early history of the geomagnetic field, and prompt detailed microscopic investigations as well as paleomagnetic tests to constrain the age of remanence. © 2014. American Geophysical Union. All Rights Reserved

    Rhenium-osmium isotopes and highly siderophile elements in ultramafic rocks from the Eoarchean Saglek Block, northern Labrador, Canada: implications for Archean mantle evolution

    Get PDF
    We determined highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, and Re) concentrations and Os-187/(188) Os ratios for ultramafic rocks distributed over the Eoarchean gneiss complex of the Saglek-Hebron area in northern Labrador, Canada in order to constrain to what extent variations in HSE abundances are recorded in Early Archean mantle that have well-resolved W-182 isotope anomalies relative to the present-day mantle (similar to+11 ppm: Liu et al., 2016). The samples analysed here have been previously classified into two suites: mantle-derived peridotites occurring as tectonically-emplaced slivers of lithospheric mantle, and metakomatiites comprising mostly pyroxenitic layers in supracrustal units dominated by amphibolites. Although previous Sm-Nd and Pb-Pb isotope studies provided whole-rock isochrons indicative of similar to 3.8 Ga protolith formation for both suites, our whole-rock Re-Os isotope data on a similar set of samples yield considerably younger errorchrons with ages of 3612 +/- 130 Ma (MSWD = 40) and 3096 +/- 170 Ma (MSWD = 10.2) for the metakomatiite and lithospheric mantle suites, respectively. The respective initial O-187/(188) Os = 0.10200 +/- 18 for metakomatiites and 0.1041 +/- 18 for lithospheric mantle rocks are within the range of chondrites. Re-depletion Os model ages for unradiogenic samples from the two suites are consistent with the respective Re-Os errorchrons (metakomatiite TRD = 3.4-3.6 Ga; lithospheric mantle TRD = 2.8-3.3 Ga). These observations suggest that the two ultramafic suites are not coeval. However, the estimated mantle sources for the two ultramafics suites are similar in terms of their broadly chondritic evolution of Os-187/(188) Os and their relative HSE patterns. In detail, both mantle sources show a small excess of Ru/Ir similar to that in modern primitive mantle, but a similar to 20% deficit in absolute HSE abundances relative to that in modern primitive mantle (metakomatiite 74 +/- 18% of PUM; lithospheric mantle 82 +/- 10% of PUM), consistent with the similar to 3.8 Ga Isua mantle source and Neoarchean komatiite sources around the world (similar to 70-86% of PUM). This demonstrates that the lower HSE abundances are not unique to the sources of komatiites, but rather might be a ubiquitous feature of Archean convecting mantle. This tentatively suggests that chondritic late accretion components boosted the convecting mantle HSE inventory after core separation in the Hadean, and that the Eoarchean to Neoarchean convecting mantle was depleted in its HSE content relative to that of today. Further investigation of Archean mantle-derived rocks is required to explore this hypothesis. (C) 2017 Elsevier Ltd. All rights reserved

    Geology of the Eoarchean, >3.95Ga, Nulliak supracrustal rocks in the Saglek Block, northern Labrador, Canada: the oldest geological evidence for plate tectonics

    Get PDF
    The Earth is a unique planet, which has been highly evolved, diversified and complicated through geologic time, and underwent many key events, including giant impact, magma ocean, core formation, large-scale mantle differentiation and late heavy bombardment, especially in its dawn. But, our knowledge of early Earth is limited due to the lack of the Hadean supracrustal rocks. The supracrustal rocks with the Eoarchean ages provide key evidence for the Earth's early evolution, but few supracrustal rocks have been comprehensively investigated. Therefore, we mapped in seven areas of the Saglek Block, northern Labrador, where ancient supracrustal sequences are interleaved with a diverse assemblage of orthogneisses. Early studies suggested that some of them have the Mesoarchean ages because of the lack of the Mesoarchean Saglek dyke, but we found the Saglek dykes in the areas to recognize the Eoarchean Nulliak supracrustal rocks and Uivak Gneiss in all the areas. Recent reassessment of U–Pb dating and cathodoluminescence observation of zircons from the oldest suites of the Uivak Gneiss showed that the Uivak Gneiss has the Eoarchean age, > 3.95 Ga, and forms the Iqaluk–Uivak Gneiss series. Because our geological survey clearly showed that the Iqaluk–Uivak Gneisses were intruded into the Nulliak supracrustal belts, the Nulliak supracrustal rocks are the oldest supracrustal rock in the world. The supracrustal belts consist of piles of fault-bounded blocks, which are composed of the ultramafic rocks, mafic rocks and sedimentary rocks in ascending order, similar to modern ocean plate stratigraphy (OPS). In addition, small-scale duplex structures are found over the areas. The presence of duplex structure and OPS indicates that the > 3.95 Ga Nulliak supracrustal belts originate from an accretionary complex. The presence of the accretionary complex, ophiolite and granitic continental crust provides the oldest evidence for the plate tectonics on the early Earth

    Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late Ediacaran Period

    Get PDF
    The final publication is available at Elsevier via https://doi.org/10.1016/j.gca.2015.02.025 © 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/To improve estimates of the extent of ocean oxygenation during the late Ediacaran Period, we measured the U and Mo isotope compositions of euxinic (anoxic and sulfidic) organic-rich mudrocks (ORM) of Member IV, upper Doushantuo Formation, South China. The average d238U of most samples is 0.24 ± 0.16& (2SD; relative to standard CRM145), which is slightly higher than the average d238U of 0.02 ± 0.12& for restricted Black Sea (deep-water Unit I) euxinic sediments and is similar to a modeled d238U value of 0.2& for open ocean euxinic sediments in the modern well-oxygenated oceans. Because 238U is preferentially removed to euxinic sediments compared to 235U, expanded ocean anoxia will deplete seawater of 238U relative to 235U, ultimately leading to deposition of ORM with low d238U. Hence, the high d238U of Member IV ORM points to a common occurrence of extensive ocean oxygenation ca. 560 to 551 Myr ago. The Mo isotope composition of sediments deposited from strongly euxinic bottom waters ([H2S]aq >11 lM) either directly records the global seawater Mo isotope composition (if Mo removal from deep waters is quantitative) or represents a minimum value for seawater (if Mo removal is not quantitative). Near the top of Member IV, d98Mo approaches the modern seawater value of 2.34 ± 0.10&. High d98Mo points to widespread ocean oxygenation because the preferential removal of isotopically light Mo to sediments occurs to a greater extent in O2-rich compared to O2-deficient marine environments. However, the d98Mo value for most Member IV ORM is near 0&(relative to standard NIST SRM 3134 = 0.25&), suggesting extensive anoxia. The low d98Mo is at odds with the high Mo concentrations of Member IV ORM, which suggest a large seawater Mo inventory in well-oxygenated oceans, and the high d238U. Hence, we propose that the low d98Mo of most Member IV ORM was fractionated from contemporaneous seawater. Possible mechanisms driving this isotope fractionation include: (1) inadequate dissolved sulfide for quantitative thiomolybdate formation and capture of a seawater-like d98Mo signature in sediments or (2) delivery of isotopically light Mo to sediments via a particulate Fe–Mn oxyhydroxide shuttle. A compilation of Mo isotope data from euxinic ORM suggests that there were transient episodes of extensive ocean oxygenation that break up intervals of less oxygenated oceans during late Neoproterozoic and early Paleozoic time. Hence, Member IV does not capture irreversible deep ocean oxygenation. Instead, complex ocean redox variations likely marked the transition from O2-deficient Proterozoic oceans to widely oxygenated later Phanerozoic oceans.National Science Foundation NASA Astrobiology Institute Agouron Institute Natural Sciences and Engineering Research Council of Canada Discovery Gran

    Earth’s surface environment of Archean — Carbon dioxide, oxygen and methane partial pressures —

    No full text
    corecore