30 research outputs found

    Efficient dialogue strategy to find users’ intended items from information query results

    No full text
    We address a dialogue framework that narrows down the user's query results obtained by aninformation retrieval system. The follow-up dialogue to constrain query results is signi cant especially with the speech interfaces such astelephones because a lot of query results cannot be presented to the user. The proposed dialogue framework generates guiding questions based on an information theoretic criterion to eliminate retrieved candidates by a spontaneous query without assuming a semantic slot structure. We rst describe its concept on general information query tasks, and then deal with a query task on the appliance manual where structured task knowledge is available. A hierarchical con rmation strategy is proposed by making use of a tree structure of the manual, and then three cost functions for selecting optimal question nodes are compared. Experimental evaluation demonstrates that the proposed system helps users nd their intended items more e ciently.

    Latest nuclear emulsion technology

    No full text
    Nuclear emulsion is a extremely high-resolution 3D tracking detector. Since the discovery of the pion by C.F. Powell et al. in 1946, experiments with nuclear emulsions have contributed to the development of particle physics. (e.g. the OPERA collaboration reported the discovery of νμ * ντ oscillations in appearance mode in 2015) The technology of nuclear emulsion still keeps making progress. Since 2010, we have introduced a system of nuclear emulsion gel production to our laboratory in Nagoya University, and have started self-development of the new gel, instead of from the photographic film companies. Moreover, a faster automated emulsion scanning system is developed. Its scanning speed reaches 4000 cm2/h, and the load for analyzing becomes more and more lighter. In this presentation, we report the status of nuclear emulsion technologies for cosmic ray experiments

    Latest nuclear emulsion technology

    No full text
    Nuclear emulsion is a extremely high-resolution 3D tracking detector. Since the discovery of the pion by C.F. Powell et al. in 1946, experiments with nuclear emulsions have contributed to the development of particle physics. (e.g. the OPERA collaboration reported the discovery of νμ * ντ oscillations in appearance mode in 2015) The technology of nuclear emulsion still keeps making progress. Since 2010, we have introduced a system of nuclear emulsion gel production to our laboratory in Nagoya University, and have started self-development of the new gel, instead of from the photographic film companies. Moreover, a faster automated emulsion scanning system is developed. Its scanning speed reaches 4000 cm2/h, and the load for analyzing becomes more and more lighter. In this presentation, we report the status of nuclear emulsion technologies for cosmic ray experiments

    Latest nuclear emulsion technology

    No full text
    Nuclear emulsion is a extremely high-resolution 3D tracking detector. Since the discovery of the pion by C.F. Powell et al. in 1946, experiments with nuclear emulsions have contributed to the development of particle physics. (e.g. the OPERA collaboration reported the discovery of νμ * ντ oscillations in appearance mode in 2015) The technology of nuclear emulsion still keeps making progress. Since 2010, we have introduced a system of nuclear emulsion gel production to our laboratory in Nagoya University, and have started self-development of the new gel, instead of from the photographic film companies. Moreover, a faster automated emulsion scanning system is developed. Its scanning speed reaches 4000 cm2/h, and the load for analyzing becomes more and more lighter. In this presentation, we report the status of nuclear emulsion technologies for cosmic ray experiments

    Cosmic ray nuclei detection in the balloon borne nuclear emulsion gamma ray telescope flight in Australia (GRAINE 2015)

    No full text
    Nuclear emulsion plates for studying elementary particle physics as well as cosmic ray physics are very powerful tracking tools with sub-micron spatial resolutions of charged particle trajectories. Even if gamma rays have to be detected, electron-positron pair tracks can provide precise information to reconstruct their direction and energy with high accuracy. Recent developments of emulsion analysis technology can digitally handle almost all tracks recorded in emulsion plates by using the Hyper Track Selector of the OPERA group at NAGOYA University. On the other hand, the potential of time resolutions have been equipped by emulsion multilayer shifter technology in the GRAINE (Gamma Ray Astro-Imager with Nuclear Emulsion) experiments, the aims of which are to detect cosmic gamma rays such as the Vela pulsar stellar object by precise emulsion tracking analysis and to study cosmic ray particle interactions and chemical compositions. In this paper, we focus on the subject of cosmic ray nuclei detection in the GRAINE balloon flight experiments launched at Alice Springs, Australia in May 2015

    Cosmic ray nuclei detection in the balloon borne nuclear emulsion gamma ray telescope flight in Australia (GRAINE 2015)

    No full text
    Nuclear emulsion plates for studying elementary particle physics as well as cosmic ray physics are very powerful tracking tools with sub-micron spatial resolutions of charged particle trajectories. Even if gamma rays have to be detected, electron-positron pair tracks can provide precise information to reconstruct their direction and energy with high accuracy. Recent developments of emulsion analysis technology can digitally handle almost all tracks recorded in emulsion plates by using the Hyper Track Selector of the OPERA group at NAGOYA University. On the other hand, the potential of time resolutions have been equipped by emulsion multilayer shifter technology in the GRAINE (Gamma Ray Astro-Imager with Nuclear Emulsion) experiments, the aims of which are to detect cosmic gamma rays such as the Vela pulsar stellar object by precise emulsion tracking analysis and to study cosmic ray particle interactions and chemical compositions. In this paper, we focus on the subject of cosmic ray nuclei detection in the GRAINE balloon flight experiments launched at Alice Springs, Australia in May 2015
    corecore