181 research outputs found

    Percolation-dependent Reaction Rates in the Etching of Disordered Solids

    Full text link
    A prototype statistical model for the etching of a random solid is investigated in order to assess the influence of disorder and temperature on the dissolution kinetics. At low temperature, the kinetics is dominated by percolation phenomena, and the percolation threshold determines the global reaction time. At high temperature, the fluctuations of the reaction rate are Gaussian, whereas at low temperature they exhibit a power law tail due to chemical avalanches. This is an example where microscopic disorder directly induces non-classical chemical kinetics.Comment: Revtex, 4 pages, 5 figure

    STDP-driven networks and the \emph{C. elegans} neuronal network

    Full text link
    We study the dynamics of the structure of a formal neural network wherein the strengths of the synapses are governed by spike-timing-dependent plasticity (STDP). For properly chosen input signals, there exists a steady state with a residual network. We compare the motif profile of such a network with that of a real neural network of \emph{C. elegans} and identify robust qualitative similarities. In particular, our extensive numerical simulations show that this STDP-driven resulting network is robust under variations of the model parameters.Comment: 16 pages, 14 figure
    corecore