9 research outputs found

    D-Amino Acids in Plants: Sources, Metabolism, and Functions

    No full text
    Although plants are permanently exposed to d-amino acids (d-AAs) in the rhizosphere, these compounds were for a long time regarded as generally detrimental, due to their inhibitory effects on plant growth. Recent studies showed that this statement needs a critical revision. There were several reports of active uptake by and transport of d-AAs in plants, leading to the question whether these processes happened just as side reactions or even on purpose. The identification and characterization of various transporter proteins and enzymes in plants with considerable affinities or specificities for d-AAs also pointed in the direction of their targeted uptake and utilization. This attracted more interest, as d-AAs were shown to be involved in different physiological processes in plants. Especially, the recent characterization of d-AA stimulated ethylene production in Arabidopsis thaliana revealed for the first time a physiological function for a specific d-AA and its metabolizing enzyme in plants. This finding opened the question regarding the physiological or developmental contexts in which d-AA stimulated ethylene synthesis are involved in. This question and the ones about the transport characteristics of d-AAs, their metabolism, and their different physiological effects, are the focus of this review

    Hybrid Chemoenzymatic Synthesis of C-7-Sugars for Molecular Evidence of in vivo Shikimate Pathway Inhibition

    No full text
    The design of distinctive chemical synthesis strategies aims for the most efficient routes towards versatile compounds in drug target studies. Here, we establish a powerful hybrid synthetic approach of total chemical and chemoenzymatic synthesis to efficiently obtain various 7‐deoxy‐sedoheptulose (7dSh, 1) analogues, unique C(7) sugars, for structure‐activity relationship studies. 7dSh (1) is a rare microbial sugar with in planta herbicidal activity. As natural antimetabolite of 3‐dehydroquinate synthase (DHQS), 7dSh (1) inhibits the shikimate pathway, which is essential for the synthesis of aromatic amino acids in bacteria, fungi, and plants, but absent in mammals. As glyphosate, the most used chemical herbicide faces restrictions worldwide, DHQS has gained more attention as valid target of herbicides and antimicrobial agents. In vitro and in vivo analyses of the C(7)‐deoxysugars confirm DHQS as enzymatic target, highlight the crucial role of uptake for inhibition and add molecular aspects to target mechanism studies of C(7)‐sugars as our contribution to global efforts for alternative weed‐control strategies
    corecore