158 research outputs found

    Full Flow: Optical Flow Estimation By Global Optimization over Regular Grids

    Full text link
    We present a global optimization approach to optical flow estimation. The approach optimizes a classical optical flow objective over the full space of mappings between discrete grids. No descriptor matching is used. The highly regular structure of the space of mappings enables optimizations that reduce the computational complexity of the algorithm's inner loop from quadratic to linear and support efficient matching of tens of thousands of nodes to tens of thousands of displacements. We show that one-shot global optimization of a classical Horn-Schunck-type objective over regular grids at a single resolution is sufficient to initialize continuous interpolation and achieve state-of-the-art performance on challenging modern benchmarks.Comment: To be presented at CVPR 201

    Accurate Optical Flow via Direct Cost Volume Processing

    Full text link
    We present an optical flow estimation approach that operates on the full four-dimensional cost volume. This direct approach shares the structural benefits of leading stereo matching pipelines, which are known to yield high accuracy. To this day, such approaches have been considered impractical due to the size of the cost volume. We show that the full four-dimensional cost volume can be constructed in a fraction of a second due to its regularity. We then exploit this regularity further by adapting semi-global matching to the four-dimensional setting. This yields a pipeline that achieves significantly higher accuracy than state-of-the-art optical flow methods while being faster than most. Our approach outperforms all published general-purpose optical flow methods on both Sintel and KITTI 2015 benchmarks.Comment: Published at the Conference on Computer Vision and Pattern Recognition (CVPR 2017
    • …
    corecore