158 research outputs found
Full Flow: Optical Flow Estimation By Global Optimization over Regular Grids
We present a global optimization approach to optical flow estimation. The
approach optimizes a classical optical flow objective over the full space of
mappings between discrete grids. No descriptor matching is used. The highly
regular structure of the space of mappings enables optimizations that reduce
the computational complexity of the algorithm's inner loop from quadratic to
linear and support efficient matching of tens of thousands of nodes to tens of
thousands of displacements. We show that one-shot global optimization of a
classical Horn-Schunck-type objective over regular grids at a single resolution
is sufficient to initialize continuous interpolation and achieve
state-of-the-art performance on challenging modern benchmarks.Comment: To be presented at CVPR 201
Accurate Optical Flow via Direct Cost Volume Processing
We present an optical flow estimation approach that operates on the full
four-dimensional cost volume. This direct approach shares the structural
benefits of leading stereo matching pipelines, which are known to yield high
accuracy. To this day, such approaches have been considered impractical due to
the size of the cost volume. We show that the full four-dimensional cost volume
can be constructed in a fraction of a second due to its regularity. We then
exploit this regularity further by adapting semi-global matching to the
four-dimensional setting. This yields a pipeline that achieves significantly
higher accuracy than state-of-the-art optical flow methods while being faster
than most. Our approach outperforms all published general-purpose optical flow
methods on both Sintel and KITTI 2015 benchmarks.Comment: Published at the Conference on Computer Vision and Pattern
Recognition (CVPR 2017
- …