28 research outputs found

    Formation of the sea passenger transportation market and cruise tourism industry

    Get PDF
    The article is devoted to the emergence, development and current state of sea passenger transportation. The main stages of development of sea passenger transportation, characteristics of vehicles, difficulties that arose during the operation of passenger vessels are presented. The factors that contributed to the development and industry of sea cruises are analyzed. The issues of gradual transformation of sea cruises into tourist entertainment of mass tourism are considered

    Magnetization plateaux of S = 1/2 two-dimensional frustrated antiferromagnet Cs2_2CuBr4_4

    Full text link
    The field induced magnetic phase transitions of Cs2_2CuBr4_4 were investigated by means of magnetization process and neutron scattering experiments. This system undergoes magnetic phase transition at Ne\'{e}l temperature TN=1.4T_\mathrm{N}=1.4 K at zero field, and exhibits the magnetization plateau at approximately one third of the saturation magnetization for the field directions HbH\parallel b and HcH\parallel c. In the present study, additional symptom of the two-third magnetization plateau was found in the field derivative of the magnetization process. The magnetic structure was found to be incommensurate with the ordering vector Q=(0,0.575,0)\boldsymbol{Q}=(0, 0.575, 0) at zero field. With increasing magnetic field parallel to the c-axis, the ordering vector increases continuously and is locked at Q=(0,0.662,0)\boldsymbol{Q}=(0, 0.662, 0) in the plateau field range 13.1T<H<14.4T13.1 \mathrm{T} < H < 14.4 \mathrm{T}. This indicates that the collinear \textit{up-up-down} spin structure is stabilized by quantum fluctuation at the magnetization plateau.Comment: 6 pages, 4 Postscript figures, uses iopams.sty and IOPART.CL

    Сейсмічний експеримент TTZ-South

    Get PDF
    The wide-angle reflection and refraction (WARR) TTZ-South transect carried out in 2018 crosses the SW region of Ukraine and the SE region of Poland. The TTZ-South profile targeted the structure of the Earth’s crust and upper mantle of the Trans-European Suture Zone, as well as the southwestern segment of the East European Craton (slope of the Ukrainian Shield). The ~550 km long profile (~230 km in Poland and ~320 km in western Ukraine) is an extension of previously realized projects in Poland, TTZ (1993) and CEL03 (2000). The deep seismic sounding study along the TTZ-South profile using TEXAN and DATA-CUBE seismic stations (320 units) made it possible to obtain high-quality seismic records from eleven shot points (six in Ukraine and five in Poland). This paper presents a smooth P-wave velocity model based on first-arrival travel-time inversion using the FAST (First Arrival Seismic Tomography) code.The obtained image represents a preliminary velocity model which, according to the P-wave velocities, consists of a sedimentary layer and the crystalline crust that could comprise  upper, middle and lower crustal layers. The Moho interface, approximated by the 7.5 km/s isoline, is located at 45—47 km depth in the central part of the profile, shallowing to 40 and 37 km depth in the northern (Radom-Łysogóry Unit, Poland) and southern (Volyno-Podolian Monocline, Ukraine) segments of the profile, respectively. A peculiar feature of the velocity cross-section is a number of high-velocity bodies distinguished in the depth range of 10—35 km. Such high-velocity bodies were detected previously in the crust of the Radom-Łysogóry Unit. These bodies, inferred at depths of 10—35 km, could be allochthonous fragments of what was originally a single mafic body or separate mafic bodies intruded into the crust during the break-up of Rodinia in the Neoproterozoic, which was accompanied by considerable rifting. The manifestations of such magmatism are known in the NE part of the Volyno-Podolian Monocline, where the Vendian trap formation occurs at the surface.Сейсмический профиль TTZ-South с использованием преломленных и отраженных в закритической области преломленных волн, отработанный в 2018 г., пересекает юго-западный район Украины и юго-восточный регион Польши. Профиль TTZ-South был направлен на изучение структуры земной коры и верхней мантии Трансъевропейской шовной зоны (ТЕШЗ) и юго-западного сегмента Восточно-Европейского кратона (склона Украинского щита). Профиль длиной ~550 км (~230 км в Польше и ~320 км на западе Украины) является продолжением ранее реализованных проектов в Польше — профиля TTZ (1993 г.) и CEL03 (2000 г.). Глубинное сейсмическое зондирование по профилю TTZ-South, выполненное с использованием 320 сейсмических станций TEXAN и DATA-CUBE, позволило получить сейсмические записи высокого качества из одиннадцати пунктов взрыва (шесть в Украине и пять в Польше). В данной статье представлена упрощенная Р-скоростная модель, основанная на инверсии времен пробега первых вступлений Р-волн, построенная с использованием программы сейсмической томографии первых вступлений FAST. Полученное изображение представляет собой предварительную скоростную модель, которая состоит из осадочного слоя и кристаллической коры, включающей верхний, средний и нижний ее слои. Поверхность Мохо, аппроксимируемая изолинией 7,5 км/с, расположена на глубине 45—47 км в центральной части профиля, воздымаясь до 40 и 37 км в северной (Радом-Лысогорский блок в Польше) и южной (Волыно-Подольская моноклиналь в Украине) частях профиля соответственно. Особенностью скоростного разреза является ряд высокоскоростных тел, выявленных в диапазоне глубин 10—35 км. Аналогичные высокоскоростные тела ранее были обнаружены в коре Радом-Лысогорского блока. Тела, обнаруженные на глубине 10—35 км, могут быть аллохтонными фрагментами изначально единого массива основных пород или отдельными телами основного состава, внедрившимися в кору в неопротерозое во время раскола суперконтинета Родиния, который сопровождался мощным рифтогенезом. Проявления рифтогенного магматизма известны в северо-восточной части Волыно-Подольской моноклинали, где на поверхность выходят вендские трапы.Сейсмічний профіль TTZ-South з використанням заломлених і відбитих у за критичній зоні заломлених хвиль, відпрацьований у 2018 р., перетинає південно-західний район України і південно-східний регіон Польщі. Профіль TTZ-South був спрямований на вивчення структури земної кори і верхньої мантії Транс'єв ропейської шовної зони (ТЄШЗ) і південно-західного сегмента Східно-Європейського кратона (схила Українського щита). Профіль довжиною ~550 км (~230 км в Польщі і ~320 км на заході України) є продовженням раніше реалізованих проєктів у Польщі — профілю TTZ (1993 р.) і CEL03 (2000 р). Глибинне сейсмічне зондування за профілем TTZ-South, виконане з використанням 320 сейсмічних станцій TEXAN і DATA-CUBE, дало змогу отримати сейсмічні записи високої якості з одинадцяти пунктів вибуху (шість в Україні і п'ять у Польщі). У даній статті представлена спрощена Р-швидкісна модель, що базується на інверсії часів пробігу перших вступів Р-хвиль, побудована з використанням програми сейсмічної томографії перших вступів FAST. Отримане зображення являє собою попередню швидкісну модель, яка складається з осадового шару і кристалічної кори, що включає верхній, середній і нижній її шари. Поверхня Мохо, що апроксимується ізолінією 7,5 км/с, розташована на глибині 45—47 км у центральній частині профілю, здіймається до 40 і 37 км у північній (Радом-Лисогорський блок у Польщі) і південній (Волино-Подільська монокліналь в Україні) частинах профілю відповідно. Особливістю швидкісного розрізу є ряд високошвидкісних тіл, виявлених у діапазоні глибин 10—35 км. Подібні високошвидкісні тіла раніше були виявлені в корі Радом-Лисогірського блоку. Тіла, виявлені на глибині 10—35 км, можуть бути алохтонними фрагментами спочатку єдиного масиву основних порід або окремими тілами основного складу, що впровадилися в кору в неопротерозої під час розколу суперконтінета Родінія, який супроводжувався потужним рифтогенезом. Прояви рифтогенного магматизму відомі в північно-східній частині Волино-Подільської моноклінали, де на поверхню виходять вендські трапи

    Lithospheric structure along wide-angle seismic profile GEORIFT 2013 in Pripyat–Dnieper–Donets Basin (Belarus and Ukraine)

    Get PDF
    The GEORIFT 2013 (GR'13) WARR (wide-angle reflection and refraction) experiment was carried out in 2013 in the territory of Belarus and Ukraine with broad international co-operation. The aim of the work is to study basin architecture and deep structure of the Pripyat-Dnieper-Donets Basin (PDDB), which is the deepest and best studied Palaeozoic rift basin in Europe. The PDDB is located in the southern part of the East European Craton (EEC) and crosses Sarmatia-one of the three segments of the EEC. The PDDB was formed by Late Devonian rifting associated with domal basement uplift and magmatism. The GR'13 extends in NW SE direction along the PDDB strike and crosses the Pripyat Trough (PT) and Dnieper Graben (DG) separated by the Bragin Uplift (BU) of the basement. The field acquisition along the GR'13 (of 670 km total length) involved 14 shots and recorders deployed every similar to 2.2 km for several shot points. The good quality of the data, with first arrivals visible up to 670 km for several shot points, allowed for construction of a velocity model extending to 80 km depth using ray-tracing modelling. The thickness of the sediments (Vp <6.0 km s(-1)) varies from 1-4 km in the PT, to 5 km in the NW part of the DG, to 10-13 km in the SE part of the profile. Below the DG, at similar to 330-530 km distance, we observed an upwarping of the lower crust (with Vp of similar to 7.1 km s(-1)) to 25 km depth that represents a rift pillow or mantle underplate. The Moho shallows southeastwards from similar to 47 km in the PT to 40-38 km in the DG with mantle velocities of 8.35 and similar to 8.25 km s(-1) in the PT and DG, respectively. A near-horizontal mantle discontinuity was found beneath BU (a transition zone from the PT to the DG) at the depth of 50-47 km. It dips to the depth of similar to 60 km at distances of 360-405 km, similar to the intersecting EUROBRIDGE'97 profile. The crust and upper mantle structure on the GR'13 may reflect varying intensity of rifting in the PDDB from a passive stage in the PT to active rifting in the DG. The absence of Moho uplift and relatively thick crystalline crust under the PT is explained by its tectonic position as a closing unit of the PDDB, with a gradual attenuation of rifting from the southeast to the northwest. The most active stage of rifting is evidenced in the DG by a shallower Moho and by a presence of a rift pillow caused by mafic and ultramafic intrusions during the active phase. The junction of the PT and the DG (the BU) locates just at its intersection with the NS regional tectonic zone Odessa-Gomel. Most likely, the 'blocking' effect of this zone did not allow for further propagation of active rifting to the NW.Peer reviewe

    Crustal and Upper Mantle Velocity Model along the DOBRE-4 Profile from North Dobruja to the Central Region of the Ukrainian Shield : 1. Seismic Data

    Get PDF
    For studying the structure of the lithosphere in southern Ukraine, wide-angle seismic studies that recorded the reflected and refracted waves were carried out under the DOBRE-4 project. The field works were conducted in October 2009. Thirteen chemical shot points spaced 35-50 km apart from each other were implemented with a charge weight varying from 600 to 1000 kg. Overall 230 recording stations with an interval of 2.5 km between them were used. The high quality of the obtained data allowed us to model the velocity section along the profile for P-and S-waves. Seismic modeling was carried out by two methods. Initially, trial-and-error ray tracing using the arrival times of the main reflected and refracted P-and S-phases was conducted. Next, the amplitudes of the recorded phases were analyzed by the finite-difference full waveform method. The resulting velocity model demonstrates a fairly homogeneous structure from the middle to lower crust both in the vertical and horizontal directions. A drastically different situation is observed in the upper crust, where the Vp velocities decrease upwards along the section from 6.35 km/s at a depth of 15-20 km to 5.9-5.8 km/s on the surface of the crystalline basement; in the Neoproterozoic and Paleozoic deposits, it diminishes from 5.15 to 3.80 km/s, and in the Mesozoic layers, it decreases from 2.70 to 2.30 km/s. The sub-crustal Vp gradually increases downwards from 6.50 to 6.7-6.8 km/s at the crustal base, which complicates the problem of separating the middle and lower crust. The Vp velocities above 6.80 km/s have not been revealed even in the lowermost part of the crust, in contrast to the similar profiles in the East European Platform. The Moho is clearly delineated by the velocity contrast of 1.3-1.7 km/s. The alternating pattern of the changes in the Moho depths corresponding to Moho undulations with a wavelength of about 150 km and the amplitude reaching 8 to 17 km is a peculiarity of the velocity model.Peer reviewe

    Centenary of the birth of the famous Ukrainian researcher of radiometeors prof. B.L. Kashcheyev (1920-2004), his heritage and trajectory measurements today

    No full text
    The development of meteor radar research was stimulated during World War II by airdefense requests to rule out false alarms of radars on meteoroid intrusions. After the war, many air defense radars were involved in scientific observations of meteors. An additional stimulus for interest in the study of radiometeors was the phenomenon of the Draconid meteor shower in 1946, which was recorded by the radio method as extraordinary. We can talk about the scientific and technological revolution of this period, associated with the use and boom in the development of radio technology and missile technology. The ballistics of the movement of airborne objects in the Earth’s atmosphere (and outside the atmosphere since 1957) of artificial and natural origin is becoming increasingly complex. Radio technology could not have developed without knowledge of the ionosphere and the effects of the Sun on radio communications, along with the effects of the Sun on the ionosphere. In the ionosphere, a layer at altitudes of 70-130 km is called the meteor zone, i.e. the zone where cosmic bodies, burning in the Earth’s atmosphere, cause the appearance of ionized meteor tracks, which interact with radar radiation and reflect it. This allows the radar receiver to record the reflected signal. In the presence of three receivers spaced 3-5 km apart (and located approximately at the vertices of a right triangle), it is possible to determine the guiding cosines of the trajectory of the meteoroid in the Earth’s atmosphere. Continuing the trajectory of the meteoroid to the intersection with the celestial sphere at infinity, we obtain a point called the meteor radiant. In basic optical meteor observations, the trajectory is determined differently than in the radio method. The article highlights the significance of the event of the centenary of the birth of the famous Ukrainian researcher of radiometeors Prof.KashcheyevB.L. ˙ (1920-2004) anditslegacy, aswell as the problems and solutions of trajectory measurements today

    НАПРЯМИ АКТИВІЗАЦІЇ РОЗВИТКУ ЕКОТУРИЗМУ В УКРАЇНІ

    No full text
    This study raises issues related to the current state of ecotourism and prospects for its development in our country. Under ecological tourism we understand the form of nature-oriented tourism, carried out in order to learn about wildlife and destination culture, which does not violate the integrity of the ecosystem, designed to contribute to the conservation of natural resources, environmental protection and socio-econom­ic development of the tourist area. According to the World Tourism Organization, Ukraine has great potential for the development of ecotourism and the opportunity to be on the list of leading countries in this area. However, there are a number of limitations and problems that restrain the more active development of ecotourism in Ukraine. The aim of the article is to investigate the reasons for the insufficient devel­opment of ecotourism in Ukraine and to substantiate the directions of its intensifica­tion in the country. The comparative characteristics of the areas of protected areas of the world and Ukraine indicate that in Ukraine and some CIS countries is dominated by a small number of protected areas, but with a large average area in contrast to countries such as Canada, Australia, Sweden, Norway, which have much more pro­tected territories with their relatively small average area. It is noted that in Ukraine, in contrast to a number of foreign countries, where there are more accurate methods of calculating the tourist flow, it is very difficult to estimate the real flow of visitors to national parks, due to the lack of unambiguous methods of counting visitors. To promote ecological tourism, the administration of national parks is recommended to present parks at international tourism exhibitions, cooperate more actively with tour operators and travel agents, develop the park's infrastructure and recreational activi­ties within it, offering tourists new routes.У даному досліджені піднімаються питання, пов’язані з сучасним станом еко­туризму та перспектив його розвитку в нашій країні. Україна за оцінками Всес­вітньої туристської організації має великий потенціал для розвитку екотуризму та можливість опинитися в списку лідируючих країн у цьому напряму. Однак існує ряд обмежень і проблем, які перешкоджають більш активному розвитку екотуризму в України. Метою статті є дослідити причини недостатнього роз­витку екотуризму в Україні та обґрунтувати напрями його активізації в країні. Відмічено, що в Україні, на відміну від ряду зарубіжних країн, де існують більш точні методи підрахунку туристського потоку, дуже складно оцінити реальний потік відвідувачів національних парків, через відсутність однозначних методів обліку відвідувачів. Для популяризації екологічного туризму адміністрації наці­ональних природних парків рекомендовано презентувати парки на міжнародних туристичних виставках, активніше співрацювати з туроператорами та тураген­тами, розвивати інфраструктуру парку та рекреаційну діяльність в його межах, пропонуючи туристам нові маршрути.У даному досліджені піднімаються питання, пов’язані з сучасним станом еко­туризму та перспектив його розвитку в нашій країні. Україна за оцінками Всес­вітньої туристської організації має великий потенціал для розвитку екотуризму та можливість опинитися в списку лідируючих країн у цьому напряму. Однак існує ряд обмежень і проблем, які перешкоджають більш активному розвитку екотуризму в України. Метою статті є дослідити причини недостатнього роз­витку екотуризму в Україні та обґрунтувати напрями його активізації в країні. Відмічено, що в Україні, на відміну від ряду зарубіжних країн, де існують більш точні методи підрахунку туристського потоку, дуже складно оцінити реальний потік відвідувачів національних парків, через відсутність однозначних методів обліку відвідувачів. Для популяризації екологічного туризму адміністрації наці­ональних природних парків рекомендовано презентувати парки на міжнародних туристичних виставках, активніше співрацювати з туроператорами та тураген­тами, розвивати інфраструктуру парку та рекреаційну діяльність в його межах, пропонуючи туристам нові маршрути

    New U2T2X Hydrides

    No full text
    Abstract is not availableJRC.E.6-Actinides researc
    corecore