38 research outputs found

    Dynamic Spectrum Policies: Promises and Challenges

    Get PDF

    Convolutional Radio Modulation Recognition Networks

    Full text link
    We study the adaptation of convolutional neural networks to the complex temporal radio signal domain. We compare the efficacy of radio modulation classification using naively learned features against using expert features which are widely used in the field today and we show significant performance improvements. We show that blind temporal learning on large and densely encoded time series using deep convolutional neural networks is viable and a strong candidate approach for this task especially at low signal to noise ratio

    Measurements and Analysis of Secondary User Device Effects on Digital Television Receivers

    Get PDF
    This is the published version. Copyright © 2009 Newman et al.This article presents results from a study of the potential effects of secondary users operating in unoccupied television spectrum. Television spectrum is known within the wireless communications community as being underutilized, making it a prime candidate for dynamic spectrum access. The proposed use of this open spectrum has prompted questions concerning the quantity of available channel space that could be used without negative impact on consumers who view digital television broadcasts and the viability of secondary use of open channels immediately adjacent to a digital television broadcast channel. In this work, we investigate secondary device operation in the channels directly adjacent to a desired television channel, and the effects upon a selection of consumer digital television (DTV) receivers. Our observations strongly suggest that secondary users could operate "White Space Devices" (WSDs) in unoccupied channel bandwidth directly adjacent to a desired digital television (DTV) channel, with no observable adverse impact upon the reception of the desired channel content

    Hybrid Optical Rf Airborne Communications

    No full text
    The use of hybrid free-space optical (FSO)/radio-frequency (RF) links to provide robust, high-throughput communications, fixed infrastructure links, and their associated networks have been thoroughly investigated for both commercial and military applications. The extension of this paradigm to mobile, long-range networks has long been a desire by the military communications community for multigigabit mobile backbone networks. The FSO communications subsystem has historically been the primary limitation. The challenge has been addressing the compensation of propagation effects and dynamic range of the received optical signal. This paper will address the various technologies required to compensate for the effects referenced above. We will outline the effects FSO and RF links experience and how we overcome these degradations. Results from field experiments conducted, including those from the Air Force Research Laboratory Integrated RF/Optical Networked Tactical Targeting Networking Technologies (IRON-T2) program, will be presented. © 2006 IEEE
    corecore