208 research outputs found
Calcium-rich Gap Transients: Solving the Calcium Conundrum in the Intracluster Medium
X-ray measurements suggest the abundance of Calcium in the intracluster
medium is higher than can be explained using favored models for core-collapse
and Type Ia supernovae alone. We investigate whether the Calcium conundrum in
the intracluster medium can be alleviated by including a contribution from the
recently discovered subclass of supernovae known as Calcium-rich gap
transients. Although the Calcium-rich gap transients make up only a small
fraction of all supernovae events, we find that their high Calcium yields are
sufficient to reproduce the X-ray measurements found for nearby rich clusters.
We find the goodness-of-fit metric improves from 84 to 2 by
including this new class. Moreover, Calcium-rich supernovae preferentially
occur in the outskirts of galaxies making it easier for the nucleosynthesis
products of these events to be incorporated in the intracluster medium via
ram-pressure stripping. The discovery of a Calcium-rich gap transients in
clusters and groups far from any individual galaxy suggests supernovae
associated with intracluster stars may play an important role in enriching the
intracluster medium. Calcium-rich gap transients may also help explain
anomalous Calcium abundances in many other astrophysical systems including
individual stars in the Milky Way, the halos of nearby galaxies and the
circumgalactic medium. Our work highlights the importance of considering the
diversity of supernovae types and corresponding yields when modeling the
abundance of the intracluster medium and other gas reservoirs
The Galaxy Proximity Effect in the Lyman-alpha Forest
Hydrodynamic cosmological simulations predict that the average opacity of the
Ly-alpha forest should increase in the neighborhood of galaxies because
galaxies form in dense environments. Recent observations (Adelberger et al.
2002) confirm this expectation at large scales, but they show a decrease of
absorption at comoving separations Delta_r <~ 1 Mpc/h. We show that this
discrepancy is statistically significant, especially for the innermost data
point at Delta_r <= 0.5 Mpc/h, even though this data point rests on three
galaxy-quasar pairs. Galaxy redshift errors of the expected magnitude are
insufficient to resolve the conflict. Peculiar velocities allow gas at comoving
distances >~ 1 Mpc/h to produce saturated absorption at the galaxy redshift,
putting stringent requirements on any ``feedback'' solution. Local
photoionization is insufficient, even if we allow for recurrent AGN activity
that keeps the neutral hydrogen fraction below its equilibrium value. A simple
``wind'' model that eliminates all neutral hydrogen in spheres around the
observed galaxies can marginally explain the data, but only if the winds extend
to comoving radii ~1.5 Mpc/h.Comment: 4 pages, 1 figure; To appear in proceedings of the 13th Annual
Astrophysics Conference in College Park, Maryland, The Emergence of Cosmic
Structure, eds. S.Holt and C. Reynolds, (AIP
- …
