5 research outputs found

    Low density lipoprotein and liposome mediated uptake and cytotoxic effect of N4-octadecyl-1-β-D-arabinofuranosylcytosine in Daudi lymphoma cells

    Get PDF
    Low density lipoprotein (LDL) receptor-mediated uptake and cytotoxic effects of N4-octadecyl-1-beta-D-arabinofuranosylcytosine (NOAC) were studied in Daudi lymphoma cells. NOAC was either incorporated into LDL or liposomes to compare specific and unspecific uptake mechanisms. Binding of LDL to Daudi cells was not altered after NOAC incorporation (K(D) 60 nM). Binding of liposomal NOAC was not saturable with increasing concentrations. Specific binding of NOAC-LDL to Daudi cells was five times higher than to human lymphocytes. LDL receptor binding could be blocked and up- or down-regulated. Co-incubation with colchicine reduced NOAC-LDL uptake by 36%. These results suggested that NOAC-LDL is taken up via the LDL receptor pathway. In an in vitro cytotoxicity test, the IC50 of NOAC-LDL was about 160 microM, whereas with liposomal NOAC the IC50 was 40 microM. Blocking the LDL receptors with empty LDL protected 50% of the cells from NOAC cytotoxicity. The cellular distribution of NOAC-LDL or NOAC-liposomes differed only in the membrane and nuclei fraction with 13% and 6% respectively. Although it is more convenient to prepare NOAC-liposomes as compared to the loading of LDL particles with the drug, the receptor-mediated uptake of NOAC-LDL provides an interesting rationale for the specific delivery of the drug to tumours that express elevated numbers of LDL receptors

    Liposome formulations of hydrophobic drugs

    Full text link
    Here, we report methods of preparation for liposome formulations containing lipophilic drugs. In contrast to the encapsulation of water-soluble compounds into the entrapped aqueous volume of a liposome, drugs with lipophilic properties are incorporated into the phospholipid bilayer membrane. Water-soluble molecules, for example, cytotoxic or antiviral nucleosides can be transformed into lipophilic compounds by attachment of long alkyl chains, allowing their stable incorporation into liposome membranes and taking advantage of the high loading capacity lipid bilayers provide for lipophilic molecules. We created a new class of cytotoxic drugs by chemical transformation of the hydrophilic drugs cytosine-arabinoside (ara-C), 5-fluoro-deoxyuridine (5-FdU) and ethinylcytidine (ETC) into lipophilic compounds and their formulation in liposomes. The concept of chemical modification of water-soluble molecules by attachment of long alkyl chains and their stable incorporation into liposome bilayer membranes represent a very promising method for the development of new drugs not only for the treatment of tumors or infections, but also for many other diseases

    Liposome formulations of hydrophobic drugs

    Full text link
    Here we report methods of preparation for liposome formulations containing lipophilic drugs. In contrast to the encapsulation of water soluble compounds into the entrapped aqueous volume of a liposome, drugs with lipophilic properties are incorporated into the phospholipid bilayer membrane. Water-soluble molecules, for example cytotoxic or antiviral nucleosides can be transformed into lipophilic compounds by attachment of long alkyl chains, allowing their stable incorporation into liposome membranes and taking advantage of the high loading capacity lipid bilayers provide for lipophilic molecules. We created a new class of cytotoxic drugs by chemical transformation of the hydrophilic drugs cytosine-arabinoside (ara-C), 5-fluoro-deoxyuridine (5-FdU), and ethinylcytidine (ETC) into lipophilic compounds and their formulation in liposomes.The concept of chemical modification of water-soluble molecules by attachment of long alkyl chains and their stable incorporation into liposome bilayer membranes represent a very promising method for the development of new drugs not only for the treatment of tumors or infections but also for many other diseases
    corecore