36 research outputs found

    Adverse effects of the antimalaria drug, mefloquine: due to primary liver damage with secondary thyroid involvement?

    Get PDF
    BACKGROUND: Mefloquine is a clinically important antimalaria drug, which is often not well tolerated. We critically reviewed 516 published case reports of mefloquine adverse effects, to clarify the phenomenology of the harms associated with mefloquine, and to make recommendations for safer prescribing. PRESENTATION: We postulate that many of the adverse effects of mefloquine are a post-hepatic syndrome caused by primary liver damage. In some users we believe that symptomatic thyroid disturbance occurs, either independently or as a secondary consequence of the hepatocellular injury. The mefloquine syndrome presents in a variety of ways including headache, gastrointestinal disturbances, nervousness, fatigue, disorders of sleep, mood, memory and concentration, and occasionally frank psychosis. Previous liver or thyroid disease, and concurrent insults to the liver (such as from alcohol, dehydration, an oral contraceptive pill, recreational drugs, and other liver-damaging drugs) may be related to the development of severe or prolonged adverse reactions to mefloquine. IMPLICATIONS: We believe that people with active liver or thyroid disease should not take mefloquine, whereas those with fully resolved neuropsychiatric illness may do so safely. Mefloquine users should avoid alcohol, recreational drugs, hormonal contraception and co-medications known to cause liver damage or thyroid damage. With these caveats, we believe that mefloquine may be safely prescribed in pregnancy, and also to occupational groups who carry out safety-critical tasks. TESTING: Mefloquine's adverse effects need to be investigated through a multicentre cohort study, with small controlled studies testing specific elements of the hypothesis

    Cyanobacterial lipopolysaccharides and human health – a review

    Get PDF
    Cyanobacterial lipopolysaccharide/s (LPS) are frequently cited in the cyanobacteria literature as toxins responsible for a variety of heath effects in humans, from skin rashes to gastrointestinal, respiratory and allergic reactions. The attribution of toxic properties to cyanobacterial LPS dates from the 1970s, when it was thought that lipid A, the toxic moiety of LPS, was structurally and functionally conserved across all Gram-negative bacteria. However, more recent research has shown that this is not the case, and lipid A structures are now known to be very different, expressing properties ranging from LPS agonists, through weak endotoxicity to LPS antagonists. Although cyanobacterial LPS is widely cited as a putative toxin, most of the small number of formal research reports describe cyanobacterial LPS as weakly toxic compared to LPS from the Enterobacteriaceae. We systematically reviewed the literature on cyanobacterial LPS, and also examined the much lager body of literature relating to heterotrophic bacterial LPS and the atypical lipid A structures of some photosynthetic bacteria. While the literature on the biological activity of heterotrophic bacterial LPS is overwhelmingly large and therefore difficult to review for the purposes of exclusion, we were unable to find a convincing body of evidence to suggest that heterotrophic bacterial LPS, in the absence of other virulence factors, is responsible for acute gastrointestinal, dermatological or allergic reactions via natural exposure routes in humans. There is a danger that initial speculation about cyanobacterial LPS may evolve into orthodoxy without basis in research findings. No cyanobacterial lipid A structures have been described and published to date, so a recommendation is made that cyanobacteriologists should not continue to attribute such a diverse range of clinical symptoms to cyanobacterial LPS without research confirmation

    Safety and immunogenicity of modified vaccinia Ankara as a smallpox vaccine in people with atopic dermatitis.

    No full text
    BACKGROUND: Following vaccination with traditional smallpox vaccines or after exposure to vaccinated individuals, subjects with atopic dermatitis (AD) can develop eczema vaccinatum, a severe disease with disseminated eruption of pustular contagious lesions. Alternative smallpox vaccines with an improved safety profile would address this unmet medical need. METHODS: An open-label controlled Phase I clinical trial was conducted to investigate the safety and immunogenicity of modified vaccinia Ankara (MVA) in 15 healthy subjects compared to 45 subjects with either mild allergic rhinitis, a history of AD or presenting with mild active AD. MVA was given (Week 0 and 4) by a subcutaneous injection during a 28-week observation period. RESULTS: No serious adverse event was reported and vaccinations with MVA did not lead to any clinically relevant skin reactions in AD subjects. Unsolicited administration site reactions did not show any trends compared to the healthy subject group. The majority of adverse reactions were mild to moderate, and all reactions were transient and resolved without intervention. The majority of vaccinees had seroconverted by ELISA (80-93%) and PRNT (69-79%) already two weeks after the first vaccination, increasing to 100% after the second immunization, with peak GMT above 1000 and 145 for ELISA and PRNT, respectively. CONCLUSIONS: MVA was equally well tolerated and immunogenic in all enrolled subjects with mild to moderate pain and redness at the injection site being the most frequent adverse reactions. There were no differences in the safety or immunogenicity profile of MVA in healthy subjects or those with AD or allergic rhinitis. The study has confirmed MVA as a promising smallpox vaccine candidate and demonstrated in a small study population that the vaccine has a similar safety and immunogenicity profile in healthy subjects and people with active AD. Clinical trials registration: NCT00189917
    corecore