971 research outputs found

    Ocean Dynamics and the Inner Edge of the Habitable Zone for Tidally Locked Terrestrial Planets

    Full text link
    Recent studies have shown that ocean dynamics can have a significant warming effect on the permanent night sides of 1 to 1 tidally locked terrestrial exoplanets with Earth-like atmospheres and oceans in the middle of the habitable zone. However, the impact of ocean dynamics on the habitable zone's boundaries (inner edge and outer edge) is still unknown and represents a major gap in our understanding of this type of planets. Here we use a coupled atmosphere-ocean global climate model to show that planetary heat transport from the day to night side is dominated by the ocean at lower stellar fluxes and by the atmosphere near the inner edge of the habitable zone. This decrease in oceanic heat transport (OHT) at high stellar fluxes is mainly due to weakening of surface wind stress and a decrease in surface shortwave energy deposition. We further show that ocean dynamics have almost no effect on the observational thermal phase curves of planets near the inner edge of the habitable zone. For planets in the habitable zone's middle range, ocean dynamics moves the hottest spot on the surface eastward from the substellar point. These results suggest that future studies of the inner edge may devote computational resources to atmosphere-only processes such as clouds and radiation. For studies of the middle range and outer edge of the habitable zone, however, fully coupled ocean-atmosphere modeling will be necessary. Note that due to computational resource limitations, only one rotation period (60 Earth days) has been systematically examined in this study; future work varying rotation period as well as other parameters such as atmospheric mass and composition is required.Comment: 34 pages, 13 figures, and 1 tabl

    Super-Earth LHS3844b is tidally locked

    Full text link
    Short period exoplanets on circular orbits are thought to be tidally locked into synchronous rotation. If tidally locked, these planets must possess permanent day- and nightsides, with extreme irradiation on the dayside and none on the nightside. However, so far the tidal locking hypothesis for exoplanets is supported by little to no empirical evidence. Previous work showed that the super-Earth LHS 3844b likely has no atmosphere, which makes it ideal for constraining the planet's rotation. Here we revisit the Spitzer phase curve of LHS 3844b with a thermal model of an atmosphere-less planet and analyze the impact of non-synchronous rotation, eccentricity, tidal dissipation, and surface composition. Based on the lack of observed strong tidal heating we rule out rapid non-synchronous rotation (including a Mercury-like 3:2 spin-orbit resonance) and constrain the planet's eccentricity to less than 0.001 (more circular than Io's orbit). In addition, LHS 3844b's phase curve implies that the planet either still experiences weak tidal heating via a small-but-nonzero eccentricity (requiring an undetected orbital companion), or that its surface has been darkened by space weathering; of these two scenarios we consider space weathering more likely. Our results thus support the hypothesis that short period rocky exoplanets are tidally locked, and further show that space weathering can significantly modify the surfaces of atmosphere-less exoplanets.Comment: Accepte

    Semileptonic decays of baryons in a relativistic quark model

    Full text link
    We calculate semileptonic decays of light and heavy baryons in a relativistically covariant constituent quark model. The model is based on the Bethe-Salpeter-equation in instantaneous approximation. It generates satisfactory mass spectra for mesons and baryons up to the highest observable energies. Without introducing additional free parameters we compute on this basis helicity amplitudes of electronic and muonic semileptonic decays of baryons. We thus obtain form factor ratios and decay rates in good agreement with experiment.Comment: 8 pages, 10 figures, 2 tables, typos remove
    • …
    corecore