5 research outputs found

    Identification of a Small Molecule Inhibitor of Bacterial AraC Family Activators

    Get PDF
    Protein members of the AraC family of bacterial transcriptional activators have great promise as targets for the development of novel antibacterial agents. Here, we describe an in vivo high throughput screen to identify inhibitors of the AraC family activator protein RhaS. The screen used two E. coli reporter fusions; one to identify potential RhaS inhibitors, and a second to eliminate non-specific inhibitors from consideration. One compound with excellent selectivity, OSSL_051168, was chosen for further study. OSSL_051168 inhibited in vivo transcription activation by the RhaS DNA-binding domain to the same extent as the full-length protein, indicating that this domain was the target of its inhibition. Growth curves showed that OSSL_051168 did not impact bacterial cell growth at the concentrations used in this study. In vitro DNA binding assays with purified protein suggest that OSSL_051168 inhibits DNA binding by RhaS. In addition, we found that it inhibits DNA binding by a second AraC family protein, RhaR, which shares 30% amino acid identity with RhaS. OSSL_051168 did not have a significant impact on DNA binding by the non-AraC family proteins CRP and LacI, suggesting that the inhibition is likely specific for RhaS, RhaR, and possibly additional AraC family activator proteins

    Linker Regions of the RhaS and RhaR Proteins

    No full text
    Substitutions within the interdomain linkers of the AraC/XylS family proteins RhaS and RhaR were tested to determine whether side chain identity or linker structure was required for function. Neither was found crucial, suggesting that the linkers do not play a direct role in activation, but rather simply connect the two domains

    Transcription Activation by the DNA-Binding Domain of the AraC Family Protein RhaS in the Absence of Its Effector-Binding Domainâ–¿

    No full text
    The Escherichia coli l-rhamnose-responsive transcription activators RhaS and RhaR both consist of two domains, a C-terminal DNA-binding domain and an N-terminal dimerization domain. Both function as dimers and only activate transcription in the presence of l-rhamnose. Here, we examined the ability of the DNA-binding domains of RhaS (RhaS-CTD) and RhaR (RhaR-CTD) to bind to DNA and activate transcription. RhaS-CTD and RhaR-CTD were both shown by DNase I footprinting to be capable of binding specifically to the appropriate DNA sites. In vivo as well as in vitro transcription assays showed that RhaS-CTD could activate transcription to high levels, whereas RhaR-CTD was capable of only very low levels of transcription activation. As expected, RhaS-CTD did not require the presence of l-rhamnose to activate transcription. The upstream half-site at rhaBAD and the downstream half-site at rhaT were found to be the strongest of the known RhaS half-sites, and a new putative RhaS half-site with comparable strength to known sites was identified. Given that cyclic AMP receptor protein (CRP), the second activator required for full rhaBAD expression, cannot activate rhaBAD expression in a ΔrhaS strain, it was of interest to test whether CRP could activate transcription in combination with RhaS-CTD. We found that RhaS-CTD allowed significant activation by CRP, both in vivo and in vitro, although full-length RhaS allowed somewhat greater CRP activation. We conclude that RhaS-CTD contains all of the determinants necessary for transcription activation by RhaS
    corecore