290 research outputs found
Splitting fields and general differential Galois theory
An algebraic technique is presented that does not use results of model theory
and makes it possible to construct a general Galois theory of arbitrary
nonlinear systems of partial differential equations. The algebraic technique is
based on the search for prime differential ideals of special form in tensor
products of differential rings. The main results demonstrating the work of the
technique obtained are the theorem on the constructedness of the differential
closure and the general theorem on the Galois correspondence for normal
extensions..Comment: 33 pages, this version coincides with the published on
Random Networks Tossing Biased Coins
In statistical mechanical investigations on complex networks, it is useful to
employ random graphs ensembles as null models, to compare with experimental
realizations. Motivated by transcription networks, we present here a simple way
to generate an ensemble of random directed graphs with, asymptotically,
scale-free outdegree and compact indegree. Entries in each row of the adjacency
matrix are set to be zero or one according to the toss of a biased coin, with a
chosen probability distribution for the biases. This defines a quick and simple
algorithm, which yields good results already for graphs of size n ~ 100.
Perhaps more importantly, many of the relevant observables are accessible
analytically, improving upon previous estimates for similar graphs
Gravitational detection of a low-mass dark satellite at cosmological distance
The mass-function of dwarf satellite galaxies that are observed around Local
Group galaxies substantially differs from simulations based on cold dark
matter: the simulations predict many more dwarf galaxies than are seen. The
Local Group, however, may be anomalous in this regard. A massive dark satellite
in an early-type lens galaxy at z = 0.222 was recently found using a new method
based on gravitational lensing, suggesting that the mass fraction contained in
substructure could be higher than is predicted from simulations. The lack of
very low mass detections, however, prohibited any constraint on their mass
function. Here we report the presence of a 1.9 +/- 0.1 x 10^8 M_sun dark
satellite in the Einstein-ring system JVAS B1938+666 at z = 0.881, where M_sun
denotes solar mass. This satellite galaxy has a mass similar to the Sagittarius
galaxy, which is a satellite of the Milky Way. We determine the logarithmic
slope of the mass function for substructure beyond the local Universe to be
alpha = 1.1^+0.6_-0.4, with an average mass-fraction of f = 3.3^+3.6_-1.8 %, by
combining data on both of these recently discovered galaxies. Our results are
consistent with the predictions from cold dark matter simulations at the 95 per
cent confidence level, and therefore agree with the view that galaxies formed
hierarchically in a Universe composed of cold dark matter.Comment: 25 pages, 7 figures, accepted for publication in Nature (19 January
2012
Differential-Algebraic Integrability Analysis of the Generalized Riemann Type and Korteweg-de Vries Hydrodynamical Equations
A differential-algebraic approach to studying the Lax type integrability of
the generalized Riemann type hydrodynamic equations at N = 3; 4 is devised. The
approach is also applied to studying the Lax type integrability of the well
known Korteweg-de Vries dynamical system.Comment: 11 page
Feedback topology and XOR-dynamics in Boolean networks with varying input structure
We analyse a model of fixed in-degree Random Boolean Networks in which the
fraction of input-receiving nodes is controlled by a parameter gamma. We
investigate analytically and numerically the dynamics of graphs under a
parallel XOR updating scheme. This scheme is interesting because it is
accessible analytically and its phenomenology is at the same time under
control, and as rich as the one of general Boolean networks. Biologically, it
is justified on abstract grounds by the fact that all existing interactions
play a dynamical role. We give analytical formulas for the dynamics on general
graphs, showing that with a XOR-type evolution rule, dynamic features are
direct consequences of the topological feedback structure, in analogy with the
role of relevant components in Kauffman networks. Considering graphs with fixed
in-degree, we characterize analytically and numerically the feedback regions
using graph decimation algorithms (Leaf Removal). With varying gamma, this
graph ensemble shows a phase transition that separates a tree-like graph region
from one in which feedback components emerge. Networks near the transition
point have feedback components made of disjoint loops, in which each node has
exactly one incoming and one outgoing link. Using this fact we provide
analytical estimates of the maximum period starting from topological
considerations
The ACS LCID project. X. The Star Formation History of IC 1613: Revisiting the Over-Cooling Problem
We present an analysis of the star formation history (SFH) of a field near
the half light radius in the Local Group dwarf irregular galaxy IC 1613 based
on deep Hubble Space Telescope Advanced Camera for Surveys imaging. Our
observations reach the oldest main sequence turn-off, allowing a time
resolution at the oldest ages of ~1 Gyr. Our analysis shows that the SFH of the
observed field in IC 1613 is consistent with being constant over the entire
lifetime of the galaxy. These observations rule out an early dominant episode
of star formation in IC 1613. We compare the SFH of IC 1613 with expectations
from cosmological models. Since most of the mass is in place at early times for
low mass halos, a naive expectation is that most of the star formation should
have taken place at early times. Models in which star formation follows mass
accretion result in too many stars formed early and gas mass fractions which
are too low today (the "over-cooling problem"). The depth of the present
photometry of IC 1613 shows that, at a resolution of ~1 Gyr, the star formation
rate is consistent with being constant, at even the earliest times, which is
difficult to achieve in models where star formation follows mass assembly.Comment: 13 pages, 12 figures, accepted for publication in the Ap
Thomas Decomposition of Algebraic and Differential Systems
In this paper we consider disjoint decomposition of algebraic and non-linear
partial differential systems of equations and inequations into so-called simple
subsystems. We exploit Thomas decomposition ideas and develop them into a new
algorithm. For algebraic systems simplicity means triangularity, squarefreeness
and non-vanishing initials. For differential systems the algorithm provides not
only algebraic simplicity but also involutivity. The algorithm has been
implemented in Maple
The ISLAndS project II: The Lifetime Star Formation Histories of Six Andromeda dSphs
The Initial Star formation and Lifetimes of Andromeda Satellites (ISLAndS)
project uses Hubble Space Telescope imaging to study a representative sample of
six Andromeda dSph satellite companion galaxies. The main goal of the program
is to determine whether the star formation histories (SFHs) of the Andromeda
dSph satellites demonstrate significant statistical differences from those of
the Milky Way, which may be attributable to the different properties of their
local environments. Our observations reach the oldest main sequence turn-offs,
allowing a time resolution at the oldest ages of ~ 1 Gyr, which is comparable
to the best achievable resolution in the MW satellites. We find that the six
dSphs present a variety of SFHs that are not strictly correlated with
luminosity or present distance from M31. Specifically, we find a significant
range in quenching times (lookback times from 9 to 6 Gyr), but with all
quenching times more than ~ 6 Gyr ago. In agreement with observations of Milky
Way companions of similar mass, there is no evidence of complete quenching of
star formation by the cosmic UV background responsible for reionization, but
the possibility of a degree of quenching at reionization cannot be ruled out.
We do not find significant differences between the SFHs of the three members of
the vast, thin plane of satellites and the three off-plane dSphs. The primary
difference between the SFHs of the ISLAndS dSphs and Milky Way dSph companions
of similar luminosities and host distances is the absence of very late
quenching (< 5 Gyr ago) dSphs in the ISLAndS sample. Thus, models that can
reproduce satellite populations with and without late quenching satellites will
be of extreme interest.Comment: 24 pages, 11 figures, 3 tables, submitted to the Ap
The ISLANDS project I: Andromeda XVI, An Extremely Low Mass Galaxy not Quenched by Reionization
Based on data aquired in 13 orbits of HST time, we present a detailed
evolutionary history of the M31 dSph satellite Andromeda XVI, including its
life-time star formation history, the spatial distribution of its stellar
populations, and the properties of its variable stars. And XVI is characterized
by prolonged star formation activity from the oldest epochs until star
formation was quenched ~6 Gyr ago, and, notably, only half of the mass in stars
of And XVI was in place 10 Gyr ago. And XVI appears to be a low mass galaxy for
which the early quenching by either reionization or starburst feedback seems
highly unlikely, and thus, is most likely due to an environmental effect (e.g.,
an interaction), possibly connected to a late infall in the densest regions of
the Local Group. Studying the star formation history as a function of
galactocentric radius, we detect a mild gradient in the star formation history:
the star formation activity between 6 and 8 Gyr ago is significantly stronger
in the central regions than in the external regions, although the quenching age
appears to be the same, within 1 Gyr. We also report the discovery of 9 RR
Lyrae stars, 8 of which belong to And XVI. The RR Lyrae stars allow a new
estimate of the distance, (m-M)0= 23.72+/-0.09 mag, which is marginally larger
than previous estimates based on the tip of the red giant branch.Comment: Accepted for publication on Ap
Shaping the Phase of a Single Photon
While the phase of a coherent light field can be precisely known, the phase
of the individual photons that create this field, considered individually,
cannot. Phase changes within single-photon wave packets, however, have
observable effects. In fact, actively controlling the phase of individual
photons has been identified as a powerful resource for quantum communication
protocols. Here we demonstrate the arbitrary phase control of a single photon.
The phase modulation is applied without affecting the photon's amplitude
profile and is verified via a two-photon quantum interference measurement,
which can result in the fermionic spatial behaviour of photon pairs. Combined
with previously demonstrated control of a single photon's amplitude, frequency,
and polarisation, the fully deterministic phase shaping presented here allows
for the complete control of single-photon wave packets.Comment: 4 pages, 4 figure
- …