7 research outputs found

    Impact across ecosystem boundaries-Does Bti application change quality and composition of the diet of riparian spiders?

    Get PDF
    Emerging aquatic insects link aquatic and adjacent terrestrial food webs by subsidizing terrestrial predators with high -quality prey. One of the main constituents of aquatic subsidy, the non-biting midges (Chironomidae), showed altered emergence dynamics in response to the mosquito control agent Bacillus thuringiensis var. israelensis (Bti). As riparian spi-ders depend on aquatic subsidy, they may be affected by such changes in prey availability. Thus, we conducted a field study in twelve floodplain pond mesocosms (FPMs), six were treated with Bti (2.88 x 109 ITU/ha, VectoBac WDG) three times, to investigate if the Bti-induced shift in chironomid emergence dynamics is reflected in their nutritional value and in the diet of riparian spiders. We measured the content of proteins, lipids, glycogen, and carbohydrates in emerged Chironomidae, and determined the stable isotope ratios of female Tetragnatha extensa, a web-building spi-der living in the riparian vegetation of the FPMs. We analysed the proportion of aquatic prey in spiders' diet, niche size, and trophic position. While the content of nutrients and thus the prey quality was not significantly altered by Bti, ef-fects on the spiders' diet were observed. The trophic position of T. extensa from Bti-treated FPMs was lower compared to the control while the aquatic proportion was only minimally reduced. We assume that spiders fed more on terrestrial prey but also on other aquatic organisms such as Baetidae, whose emergence was unaffected by Bti. In contrast to the partly predaceous Chironomidae, consumption of aquatic and terrestrial primary consumers potentially explains the observed lower trophic position of spiders from Bti-treated FPMs. As prey organisms vary in their quality the suggested dietary shift could transfer previously observed effects of Bti to riparian spiders conceivably affecting their populations. Our results further support that anthropogenic stressors in aquatic ecosystems may translate to terrestrial predators through aquatic subsidy

    Fungal-fungal and fungal-bacterial interactions in aquatic decomposer communities: bacteria promote fungal diversity

    Get PDF
    Fungi produce a variety of extracellular enzymes, making recalcitrant substrates bioavailable. Thus, fungi are central for the decomposition of dead organic matter such as leaf litter. Despite their ecological importance, our understanding of relationships between fungal species diversity and ecosystem functioning is limited, especially with regard to aquatic habitats. Moreover, fungal interactions with other groups of microorganisms such as bacteria are rarely investigated. This lack of information may be attributed to methodological limitations in tracking the biomass of individual fungal species in communities, impeding a detailed assessment of deviations from the overall performance expected from the sum of individual species' performances, so-called net diversity effects (NDEs). We used fungal species-specific biomolecular tools to target fungal-fungal and fungal-bacterial interactions on submerged leaves using four cosmopolitan aquatic fungal species and a stream microbial community dominated by bacteria. In microcosms, we experimentally manipulated fungal diversity and bacterial absence/presence and assessed functional performances and fungal community composition after 14 d of incubation. Fungal community data were used to evaluate NDEs on leaf colonization. The individual fungal species were functionally distinct and fungal cultures were on average more efficient than the bacterial culture. In absence of bacteria, NDEs correlated with growth rate (negatively) and genetic divergence (positively), but were predominantly negative, suggesting that higher fungal diversity led to a lower colonization success (niche overlap). In both absence and presence of bacteria, the overall functional performances of the communities were largely defined by their composition (i.e., no interactions at the functional level). In the presence of bacteria, NDEs correlated with genetic divergence (positively) and were largely positive, suggesting higher fungal diversity stimulated colonization (niche complementarity). This stimulation may be driven by a bacteria-induced inhibition of fungal growth, alleviating competition among fungi. Resulting feedback loops eventually promote fungal coexistence and synergistic interactions. Nonetheless, overall functional performances are reduced compared to bacteria-free cultures. These findings highlight the necessity to conduct future studies, investigating biodiversity-ecosystem functioning relationships using artificial systems, without exclusion of key organisms naturally co-occurring in the compartment of interest. Otherwise, study outcomes might not reflect true ecological relationships and ultimately misguide conservation strategies

    Benthic macroinvertebrate community shifts based on Bti-induced chironomid reduction also decrease Odonata emergence

    Get PDF
    Chironomid larvae (Diptera: Chironomidae) often dominate aquatic macroinvertebrate communities and are a key food source for many aquatic predators, such as dragonfly and damselfly larvae (Odonata). Changes in aquatic macroinvertebrate communities may propagate through terrestrial food webs via altered insect emergence. Bacillus thuringiensis israelensis (Bti)-based larvicides are widely used in mosquito control but can also reduce the abundance of non-biting chironomid larvae. We applied the maximum field rate of Bti used in mosquito control three times to six mesocosms in a replicated floodplain pond mesocosm (FPM) system in spring for two consecutive years, while the remaining six FPMs were untreated. Three weeks after the third Bti application in the first year, we recorded on average a 41% reduction of chironomid larvae in Bti-treated FPMs compared to untreated FPMs and a shift in benthic macroinvertebrate community composition driven by the reduced number of chironomid, Libellulidae and Coenagrionidae larvae (Odonata). Additionally, the number of emerging Libellulidae (estimated by sampling of exuviae in the second year) was reduced by 54% in Bti-treated FPMs. Since Odonata larvae are not directly susceptible to Bti, our results suggest indirect effects due to reduced prey availability (i.e., chironomid larvae) or increased intraguild predation. As Libellulidae include species of conservation concern, the necessity of Bti applications to their habitats, e.g. floodplains, should be carefully evaluated

    Subsidy Quality Affects Common Riparian Web-Building Spiders: Consequences of Aquatic Contamination and Food Resource

    Get PDF
    Anthropogenic stressors can affect the emergence of aquatic insects. These insects link aquatic and adjacent terrestrial food webs, serving as high-quality subsidy to terrestrial consumers, such as spiders. While previous studies have demonstrated that changes in the emergence biomass and timing may propagate across ecosystem boundaries, the physiological consequences of altered subsidy quality for spiders are largely unknown. We used a model food chain to study the potential effects of subsidy quality: Tetragnatha spp. were exclusively fed with emergent Chironomus riparius cultured in the absence or presence of either copper (Cu), Bacillus thuringiensis var. israelensis (Bti), or a mixture of synthetic pesticides paired with two basal resources (Spirulina vs. TetraMin (R)) of differing quality in terms of fatty acid (FA) composition. Basal resources shaped the FA profile of chironomids, whereas their effect on the FA profile of spiders decreased, presumably due to the capacity of both chironomids and spiders to modify (dietary) FA. In contrast, aquatic contaminants had negligible effects on prey FA profiles but reduced the content of physiologically important polyunsaturated FAs, such as 20:4n-6 (arachidonic acid) and 20:5n-3 (eicosapentaenoic acid), in spiders by approximately 30% in Cu and Bti treatments. This may have contributed to the statistically significant decline (40%-50%) in spider growth. The observed effects in spiders are likely related to prey nutritional quality because biomass consumption by spiders was, because of our experimental design, constant. Analyses of additional parameters that describe the nutritional quality for consumers such as proteins, carbohydrates, and the retention of contaminants may shed further light on the underlying mechanisms. Our results highlight that aquatic contaminants can affect the physiology of riparian spiders, likely by altering subsidy quality, with potential implications for terrestrial food webs. (c) 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC

    Avoidance behavior of juvenile common toads (Bufo bufo) in response to surface contamination by different pesticides.

    No full text
    Most agricultural soils are expected to be contaminated with agricultural chemicals. As the exposure to pesticides can have adverse effects on non-target organisms, avoiding contaminated areas would be advantageous on an individual level, but could lead to a chemical landscape fragmentation with disadvantages on the metapopulation level. We investigated the avoidance behavior of juvenile common toads (Bufo bufo) in response to seven pesticide formulations commonly used in German vineyards. We used test arenas filled with silica sand and oversprayed half of each with different pesticide formulations. We placed a toad in the middle of an arena, filmed its behavior over 24 hours, calculated the proportion of time a toad spent on the contaminated side and compared it to a random side choice. We found evidence for the avoidance of the folpet formulation Folpan® 500 SC, the metrafenone formulation Vivando® and the glyphosate formulation Taifun® forte at maximum recommended field rates for vine and a trend for avoidance of Wettable Sulphur Stulln (sulphur). No avoidance was observed when testing Folpan® 80 WDG (folpet), Funguran® progress (copper hydroxide), SpinTorTM (spinosad), or 10% of the maximum field rate of any formulation tested. In the choice-tests in which we observed an avoidance, toads also showed higher activity on the contaminated side of the arena. As video analysis with tracking software is not always feasible, we further tested the effect of reducing the sampling interval for manual data analyses. We showed that one data point every 15 or 60 minutes results in a risk of overlooking a weak avoidance behavior, but still allows to verify the absence/presence of an avoidance for six out of seven formulations. Our findings are important for an upcoming pesticide risk assessment for amphibians and could be a template for future standardized tests

    A temporal perspective on aquatic subsidy: Bti affects emergence of Chironomidae

    Get PDF
    Emerging aquatic insects serve as one link between aquatic and adjacent riparian food webs via the flux of energy and nutrients. These insects provide high-quality subsidy to terrestrial predators. Thus, any disturbance of emergence processes may cascade to higher trophic levels and lead to effects across ecosystem boundaries. One stressor with potential impact on non-target aquatic insects, especially on non-biting midges (Diptera: Chironomidae), is the widely used mosquito control agent Bacillus thuringiensis var. israelensis (Bti). In a field experiment, we investigated emerging insect communities from Bti-treated (three applications, maximum field rate) and control floodplain pond mesocosms (FPMs) over 3.5 months for changes in their composition, diversity as well as the emergence dynamics and the individual weight of emerged aquatic insects over time. Bti treatments altered community compositions over the entire study duration - an effect mainly attributed to an earlier (-10 days) and reduced (-26%) peak in the emergence of Chironomidae, the dominant family (88% of collected individuals). The most reasonable explanation for this significant alteration is less resource competition caused by a decrease in chironomid larval density due to lethal effects of Bti. This is supported by the higher individual weight of Chironomidae emerging from treated FPMs (-21%) during Bti application (April - May). A temporal shift in the emergence dynamics can cause changes in the availability of prey in linked terrestrial ecosystems. Consequently, terrestrial predators may be affected by a lack of appropriate prey leading to bottom-up and topdown effects in terrestrial food webs. This study indicates the importance of a responsible and elaborated use of Bti and additionally, highlights the need to include a temporal perspective in evaluations of stressors in aquaticterrestrial meta-ecosystems

    A temporal perspective on aquatic subsidy: Bti affects emergence of Chironomidae

    Get PDF
    Emerging aquatic insects serve as one link between aquatic and adjacent riparian food webs via the flux of energy and nutrients. These insects provide high-quality subsidy to terrestrial predators. Thus, any disturbance of emergence processes may cascade to higher trophic levels and lead to effects across ecosystem boundaries. One stressor with potential impact on non-target aquatic insects, especially on non-biting midges (Diptera: Chironomidae), is the widely used mosquito control agent Bacillus thuringiensis var. israelensis (Bti). In a field experiment, we investigated emerging insect communities from Bti-treated (three applications, maximum field rate) and control floodplain pond mesocosms (FPMs) over 3.5 months for changes in their composition, diversity as well as the emergence dynamics and the individual weight of emerged aquatic insects over time. Bti treatments altered community compositions over the entire study duration – an effect mainly attributed to an earlier (∼10 days) and reduced (∼26%) peak in the emergence of Chironomidae, the dominant family (88% of collected individuals). The most reasonable explanation for this significant alteration is less resource competition caused by a decrease in chironomid larval density due to lethal effects of Bti. This is supported by the higher individual weight of Chironomidae emerging from treated FPMs (∼21%) during Bti application (April – May). A temporal shift in the emergence dynamics can cause changes in the availability of prey in linked terrestrial ecosystems. Consequently, terrestrial predators may be affected by a lack of appropriate prey leading to bottom-up and top-down effects in terrestrial food webs. This study indicates the importance of a responsible and elaborated use of Bti and additionally, highlights the need to include a temporal perspective in evaluations of stressors in aquatic-terrestrial meta-ecosystems
    corecore