530 research outputs found

    The cosmological constant and oscillating metrics

    Full text link
    The presence of a cosmological constant, Lambda, in an action with higher powers of the curvature can produce rapidly oscillating metrics. We develop a perturbative approach for generating periodic solutions to the non-linear field equations for such actions based on a small amplitude expansion. We find that these oscillations have an amplitude proportional to \sqrt{\Lambda} and a frequency of order the Planck mass. In a 4+1 dimensional scenario, a family of metrics exists that are periodic in the extra dimension and are parameterized by an effective four-dimensional cosmological constant which drives a rapid oscillation.Comment: 15 pages, uses JHEP, no figure

    A Survey of Learning Styles of Engineering Students

    Get PDF
    This study examined the learning styles of engineering students using the Index of Learning Styles (ILS) developed by Soloman and Felder (Soloman & Felder, 2002), the Cognitive Styles Analysis (CSA) developed by Riding (Riding, 1991), and the Learning Style Inventory (LSI) developed by Kolb (Kolb, 1993). Thirty-five graduate and thirty-six undergraduate engineering students took each of the assessments. There was a strong preference for the visual category on the ILS, but an even split for the imagery/verbal dimension on the CSA. Scores were also evenly split on the active/reflective and sequential/global dimensions on the ILS. Another strong preference was seen for the analytic category on the CSA. On the LSI, most students' scores indicated a preference for the convergent category and no student scores were in the divergent category. An overview of each of the instruments as well as a summary of student learning needs for each of the dimensions is presented.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Rheology of a confined granular material

    Full text link
    We study the rheology of a granular material slowly driven in a confined geometry. The motion is characterized by a steady sliding with a resistance force increasing with the driving velocity and the surrounding relative humidity. For lower driving velocities a transition to stick-slip motion occurs, exhibiting a blocking enhancement whith decreasing velocity. We propose a model to explain this behavior pointing out the leading role of friction properties between the grains and the container's boundary.Comment: 9 pages, 3 .eps figures, submitted to PR

    Protogalactic Extension of the Parker Bound

    Get PDF
    We extend the Parker bound on the galactic flux F\cal F of magnetic monopoles. By requiring that a small initial seed field must survive the collapse of the protogalaxy, before any regenerative dynamo effects become significant, we develop a stronger bound. The survival and continued growth of an initial galactic seed field ≀10−9\leq 10^{-9}G demand that F≀5×10−21(m/1017GeV)cm−2sec−1sr−1{\cal F} \leq 5 \times 10^{-21} (m/10^{17} {GeV}) {cm}^{-2} {sec}^{-1} {sr}^{-1}. For a given monopole mass, this bound is four and a half orders of magnitude more stringent than the previous `extended Parker bound', but is more speculative as it depends on assumptions about the behavior of magnetic fields during protogalactic collapse. For monopoles which do not overclose the Universe (Ωm<1\Omega_m <1), the maximum flux allowed is now 8×10−198 \times 10^{-19} cm^{-2} s^{-1} sr^{-1}, a factor of 150 lower than the maximum flux allowed by the extended Parker bound.Comment: 9 pages, 1 eps figur

    Comparison of space-time evolutions of hot/dense matter in sNN\sqrt{s_{NN}}=17 and 130 GeV relativistic heavy ion collisions based on a hydrodynamical model

    Full text link
    Based on a hydrodynamical model, we compare 130 GeV/AA Au+Au collisions at RHIC and 17 GeV/AA Pb+Pb collisions at SPS. The model well reproduces the single-particle distributions of both RHIC and SPS. The numerical solution indicates that huge amount of collision energy in RHIC is mainly used to produce a large extent of hot fluid rather than to make a high temperature matter; longitudinal extent of the hot fluid in RHIC is much larger than that of SPS and initial energy density of the fluid is only 5% higher than the one in SPS. The solution well describes the HBT radii at SPS energy but shows some deviations from the ones at RHIC.Comment: 28 pages, 21 figures, REVTeX4, one figure is added and some figures are replace

    Physics in the Real Universe: Time and Spacetime

    Get PDF
    The Block Universe idea, representing spacetime as a fixed whole, suggests the flow of time is an illusion: the entire universe just is, with no special meaning attached to the present time. This view is however based on time-reversible microphysical laws and does not represent macro-physical behaviour and the development of emergent complex systems, including life, which do indeed exist in the real universe. When these are taken into account, the unchanging block universe view of spacetime is best replaced by an evolving block universe which extends as time evolves, with the potential of the future continually becoming the certainty of the past. However this time evolution is not related to any preferred surfaces in spacetime; rather it is associated with the evolution of proper time along families of world linesComment: 28 pages, including 9 Figures. Major revision in response to referee comment

    Can induced gravity isotropize Bianchi I, V, or IX Universes?

    Get PDF
    We analyze if Bianchi I, V, and IX models in the Induced Gravity (IG) theory can evolve to a Friedmann--Roberson--Walker (FRW) expansion due to the non--minimal coupling of gravity and the scalar field. The analytical results that we found for the Brans-Dicke (BD) theory are now applied to the IG theory which has ωâ‰Ș1\omega \ll 1 (ω\omega being the square ratio of the Higgs to Planck mass) in a cosmological era in which the IG--potential is not significant. We find that the isotropization mechanism crucially depends on the value of ω\omega. Its smallness also permits inflationary solutions. For the Bianch V model inflation due to the Higgs potential takes place afterwads, and subsequently the spontaneous symmetry breaking (SSB) ends with an effective FRW evolution. The ordinary tests of successful cosmology are well satisfied.Comment: 24 pages, 5 figures, to be published in Phys. Rev. D1

    Illusions of general relativity in Brans-Dicke gravity

    Get PDF
    Contrary to common belief, the standard tenet of Brans-Dicke theory reducing to general relativity when omega tends to infinity is false if the trace of the matter energy-momentum tensor vanishes. The issue is clarified in a new approach using conformal transformations. The otherwise unaccountable limiting behavior of Brans-Dicke gravity is easily understood in terms of the conformal invariance of the theory when the sources of gravity have radiation-like properties. The rigorous computation of the asymptotic behavior of the Brans-Dicke scalar field is straightforward in this new approach.Comment: 16 pages, LaTeX, to appear in Physical Review

    Averaging Robertson-Walker Cosmologies

    Full text link
    The cosmological backreaction arises when one directly averages the Einstein equations to recover an effective Robertson-Walker cosmology, rather than assuming a background a priori. While usually discussed in the context of dark energy, strictly speaking any cosmological model should be recovered from such a procedure. We apply the Buchert averaging formalism to linear Robertson-Walker universes containing matter, radiation and dark energy and evaluate numerically the discrepancies between the assumed and the averaged behaviour, finding the largest deviations for an Einstein-de Sitter universe, increasing rapidly with Hubble rate to a 0.01% effect for h=0.701. For the LCDM concordance model, the backreaction is of the order of Omega_eff~4x10^-6, with those for dark energy models being within a factor of two or three. The impacts at recombination are of the order of 10^-8 and those in deep radiation domination asymptote to a constant value. While the effective equations of state of the backreactions in Einstein-de Sitter, concordance and quintessence models are generally dust-like, a backreaction with an equation of state w_eff<-1/3 can be found for strongly phantom models.Comment: 18 pages, 11 figures, ReVTeX. Updated to version accepted by JCA
    • 

    corecore