47 research outputs found

    Proper Motions Of VLBI Lenses, Inertial Frames and The Evolution of Peculiar Velocities

    Get PDF
    Precise determinations of the image positions in quad gravitational lenses using VLBI can be used to measure the transverse velocity of the lens galaxy and the observer. The typical proper motions are μ\muas yr1^{-1}, so the time scale to measure the motion is ten years. By measuring the dipole of the proper motions in an ensemble of lenses we can set limits on the deviation of the inertial frame defined by the lenses from that defined by the CMB dipole and estimate the Hubble constant. The residual proper motions after subtracting the dipole probe the evolution of peculiar velocities with redshift and can be used to estimate the density parameter Ω0\Omega_0. For NN lenses, VLBI measurement accuracies of σθ\sigma_\theta, and a baseline of TT years, we estimate that the 2σ\sigma limit on the rms peculiar velocity of the lens galaxies is 3100 (\sigma_\theta/10\mu\{as})({yrs}/T)/N^{1/2} \kms, and that the time required for the 2--σ\sigma limit to reach the level of the local rms peculiar velocity v0,rmsv_{0,rms} is approximately 10 N^{-1/2} (v_{0,rms}/600\kms)(\sigma_\theta/10\mu as) years. For a ten year baseline and N=10N=10 lenses we expect the 1σ\sigma limit on the misalignment with the CMB dipole to be Δθ=20\Delta \theta=20^{\circ} or equivalently to obtain an upper limit of ΔH0/H0<0.34\Delta H_0 /H_0 < 0.34 .Comment: 23 pages, figures included uuencoded gzipped ps-file, submitted to the ApJ. One correction made from the original versio

    Wiener Reconstruction of Large-Scale Structure from Peculiar Velocities

    Full text link
    We present an alternative, Bayesian method for large-scale reconstruction from observed peculiar velocity data. The method stresses a rigorous treatment of the random errors and it allows extrapolation into poorly sampled regions in real space or in k-space. A likelihood analysis is used to determine the fluctuation power spectrum, followed by a Wiener Filter (WF) analysis to obtain the minimum-variance mean fields of velocity and mass density. Constrained Realizations (CR) are then used to sample the statistical scatter about the WF mean field. The WF/CR method is applied as a demonstration to the Mark III data with 1200 km/s, 900 km/s, and 500 km/s resolutions. The main reconstructed structures are consistent with those extracted by the POTENT method. A comparison with the structures in the distribution of IRAS 1.2Jy galaxies yields a general agreement. The reconstructed velocity field is decomposed into its divergent and tidal components relative to a cube of +/-8000 km/s centered on the Local Group. The divergent component is very similar to the velocity field predicted from the distribution of IRAS galaxies. The tidal component is dominated by a bulk flow of 194 +/- 32 km/s towards the general direction of the Shapley concentration, and it also indicates a significant quadrupole.Comment: 28 pages and 8 GIF figures, Latex (aasms4.sty), submitted to ApJ. Postscript version of the figures can be obtained by anonymous ftp from: ftp://alf.huji.ac.il/pub/saleem

    Is the Lambda CDM Model Consistent with Observations of Large-Scale Structure?

    Full text link
    The claim that large-scale structure data independently prefers the Lambda Cold Dark Matter model is a myth. However, an updated compilation of large-scale structure observations cannot rule out Lambda CDM at 95% confidence. We explore the possibility of improving the model by adding Hot Dark Matter but the fit becomes worse; this allows us to set limits on the neutrino mass.Comment: To appear in Proceedings of "Sources and Detection of Dark Matter/Energy in the Universe", ed. D. B. Cline. 6 pages, including 2 color figure

    The Velocity Function of Galaxies

    Get PDF
    We present a galaxy circular velocity function, Psi(log v), derived from existing luminosity functions and luminosity-velocity relations. Such a velocity function is desirable for several reasons. First, it enables an objective comparison of luminosity functions obtained in different bands and for different galaxy morphologies, with a statistical correction for dust extinction. In addition, the velocity function simplifies comparison of observations with predictions from high-resolution cosmological N-body simulations. We derive velocity functions from five different data sets and find rough agreement among them, but about a factor of 2 variation in amplitude. These velocity functions are then compared with N-body simulations of a LCDM model (corrected for baryonic infall) in order to demonstrate both the utility and current limitations of this approach. The number density of dark matter halos and the slope of the velocity function near v_*, the circular velocity corresponding to an ~L_* spiral galaxy, are found to be comparable to that of observed galaxies. The primary sources of uncertainty in construction of Psi(log v) from observations and N-body simulations are discussed and explanations are suggected to account for these discrepancies.Comment: Latex. 28 pages, 4 figures. Accepted by Ap

    Discovery of Highly Obscured Galaxies in the Zone of Avoidance

    Get PDF
    We report the discovery of twenty-five previously unknown galaxies in the Zone of Avoidance. Our systematic search for extended extra-galactic sources in the GLIMPSE and MIPSGAL mid-infrared surveys of the Galactic plane has revealed two overdensities of these sources, located around l ~ 47 and 55 degrees and |b| less than 1 degree in the Sagitta-Aquila region. These overdensities are consistent with the local large-scale structure found at similar Galactic longitude and extending from |b| ~ 4 to 40 degrees. We show that the infrared spectral energy distribution of these sources is indeed consistent with those of normal galaxies. Photometric estimates of their redshift indicate that the majority of these galaxies are found in the redshift range z = 0.01 - 0.05, with one source located at z = 0.07. Comparison with known sources in the local Universe reveals that these galaxies are located at similar overdensities in redshift space. These new galaxies are the first evidence of a bridge linking the large-scale structure between both sides of the Galactic plane at very low Galactic latitude and clearly demonstrate the feasibility of detecting galaxies in the Zone of Avoidance using mid-to-far infrared surveys.Comment: Accepted for publication in the Astronomical Journal, 28 pages, 5 tables, 11 figure
    corecore