51 research outputs found
A randomized, open-label, comparative efficacy trial of artemether-lumefantrine suspension versus artemether-lumefantrine tablets for treatment of uncomplicated Plasmodium falciparum malaria in children in western Kenya
<p>Abstract</p> <p>Background</p> <p>Artemether/lumefantrine (AL) has been adopted as the treatment of choice for uncomplicated malaria in Kenya and other countries in the region. Six-dose artemether/lumefantrine tablets are highly effective and safe for the treatment of infants and children weighing between five and 25 kg with uncomplicated <it>Plasmodium falciparum </it>malaria. However, oral paediatric formulations are urgently needed, as the tablets are difficult to administer to young children, who cannot swallow whole tablets or tolerate the bitter taste of the crushed tablets.</p> <p>Methods</p> <p>A randomized, controlled, open-label trial was conducted comparing day 28 PCR corrected cure-rates in 245 children aged 6–59 months, treated over three days with either six-dose of artemether/lumefantrine tablets (Coartem<sup>®</sup>) or three-dose of artemether/lumefantrine suspension (Co-artesiane<sup>®</sup>) for uncomplicated falciparum malaria in western Kenya. The children were followed-up with clinical, parasitological and haematological evaluations over 28 days.</p> <p>Results</p> <p>Ninety three percent (124/133) and 90% (121/134) children in the AL tablets and AL suspension arms respectively completed followed up. A per protocol analysis revealed a PCR-corrected parasitological cure rate of 96.0% at Day 28 in the AL tablets group and 93.4% in the AL suspension group, p = 0.40. Both drugs effectively cleared gametocytes and were well tolerated, with no difference in the overall incidence of adverse events.</p> <p>Conclusion</p> <p>The once daily three-dose of artemether-lumefantrine suspension (Co-artesiane<sup>®</sup>) was not superior to six-dose artemether-lumefantrine tablets (Coartem<sup>®</sup>) for the treatment of uncomplicated malaria in children below five years of age in western Kenya.</p> <p>Trial registration</p> <p>ClinicalTrials.gov NCT00529867</p
The content of African diets is adequate to achieve optimal efficacy with fixed-dose artemether-lumefantrine: a review of the evidence
A fixed-dose combination of artemether-lumefantrine (AL, Coartem®) has shown high efficacy, good tolerability and cost-effectiveness in adults and children with uncomplicated malaria caused by Plasmodium falciparum. Lumefantrine bioavailability is enhanced by food, particularly fat
Efficacy and Safety of Artemether-Lumefantrine in the Treatment of Acute, Uncomplicated Plasmodium falciparum Malaria: A Pooled Analysis
Randomized trials have confirmed the efficacy and safety of artemether-lumefantrine (AL) for treatment of uncomplicated Plasmodium falciparum malaria. Data from seven studies supported by Novartis (1996–2007), including 647 adults (> 16 years of age, 83.3% completed the study) and 1,332 children (≤ 16 years of age, 89.3% completed the study) with microscopically confirmed uncomplicated P. falciparum malaria and treated with the recommended regimen of AL, were pooled. The 28-day polymerase chain reaction–corrected parasitologic cure rate (primary efficacy endpoint) was 97.1% (495 of 510) in adults and 97.3% (792 of 814) in children (evaluable population). Gametocytemia prevalence after day was 4.2% (23 of 554) in adults and 0.9% (8 of 846) in children. No noteworthy safety signals were observed. Serious adverse events occurred in 1.4% of the adults and 1.3% of the children. This study is the largest data set to date assessing AL therapy for treatment of acute uncomplicated P. falciparum malaria. Artemether-lumefantrine showed high cure rates and rapid resolution of parasitemia, fever, and gametocytemia in adults and children, and showed an excellent safety and tolerability profile
Editorial: Clinical drug interactions
(East African Medical Journal 2001 78 (10): 505-506
Pharmacokinetics and clinical effects of phenytoin and fosphenytoin in children with severe malaria and status epilepticus
Aims Status epilepticus is common in children with severe falciparum malaria and is associated with poor outcome. Phenytoin is often used to control status epilepticus, but its water-soluble prodrug, fosphenytoin, may be more useful as it is easier to administer. We studied the pharmacokinetics and clinical effects of phenytoin and fosphenytoin sodium in children with severe falciparum malaria and status epilepticus. Methods Children received intravenous (i.v.) phenytoin as a 18 mg kg(-1) loading dose infused over 20 min followed by a 2.5 mg kg(-1) 12 hourly maintenance dose infused over 5 min (n = 11), or i.v. fosphenytoin, administered at a rate of 50 mg min(-1) phenytoin sodium equivalents (PE; n = 16), or intramuscular (i.m.) fosphenytoin as a 18 mg kg(-1) loading dose followed by 2.5 mg kg(-1) 12 hourly of PE (n = 11). Concentrations of phenytoin in plasma and cerebrospinal fluid (CSF), frequency of seizures, cardiovascular effects (respiratory rate, blood pressure, trancutaneous oxygen tension and level of consciousness) and middle cerebral artery (MCA) blood flow velocity were monitored. Results After all routes of administration, a plasma unbound phenytoin concentration of more than 1 mug ml(-1) was rapidly (within 5-20 min) attained. Mean (95% confidence interval) steady state free phenytoin concentrations were 2.1 (1.7, 2.4; i.v. phenytoin, n = 6), 1.5 (0.96, 2.1; i.v. fosphenytoin, n = 11) and 1.4 (0.5, 2.4; i.m. fosphenytoin, n = 6), and were not statistically different for the three routes of administration. Median times (range) to peak plasma phenytoin concentrations following the loading dose were 0.08 (0.08-0.17), 0.37 (0.33-0.67) and 0.38 (0.17-2.0) h for i.v. fosphenytoin, i.v. phenytoin and i.m. fosphenytoin, respectively. CSF: plasma phenytoin concentration ratio ranged from 0.12 to 0.53 (median = 0.28, n = 16). Status epilepticus was controlled in only 36% (4/11) following i.v. phenytoin, 44% (7/16), following i.v. fosphenytoin and 64% (7/11) following i.m. fosphenytoin administration, respectively. Cardiovascular parameters and MCA blood flow were not affected by phenytoin administration. Conclusions Phenytoin and fosphenytoin administration at the currently recommended doses achieve plasma unbound phenytoin concentrations within the therapeutic range with few cardiovascular effects. Administration of fosphenytoin i.v. or i.m. offers a practical and convenient alternative to i.v. phenytoin. However, the inadequate control of status epilepticus despite rapid achievement of therapeutic unbound phenytoin concentrations warrants further investigation
Pharmacokinetics and anticonvulsant effects of diazepam in children with severe falciparum malaria and convulsions
Aims Convulsions are a common complication of severe malaria in children and are associated with poor outcome. Diazepam is used to terminate convulsions but its pharmacokinetics and pharmacodynamics have not been studied in this group. Accordingly, we carried out a comparative study of the pharmacokinetics of intravenous (i.v.) and rectal (p.r.) diazepam. Methods Twenty-five children with severe malaria and a convulsion lasting > 5 min were studied. Sixteen children received diazepam intravenously (i.v.; 0.3 mg kg(-1)) and nine rectally (p.r.; 0.5 mg kg(-1)). Plasma diazepam concentrations were measured by reversed phase high-performance liquid chromatography. The duration of convulsions, depth of coma, respiratory and cardiovascular parameters were monitored. Results Median maximum plasma diazepam concentrations of 634 (range 402-1507) ng ml(-1) and 423 (range 112-1953) ng ml(-1) were achieved at 5 and 25 min following i.v. and p.r. administration, respectively. All patients except three (one i.v. and two p.r.) achieved plasma diazepam concentration > 200 ng ml(-1) within 5 min. Following p.r. administration, plasma diazepam concentrations were more variable than i.v. administration. A single dose of i.v. diazepam terminated convulsions in all children but in only 6/9 after p.r. administration. However, nine children treated with i.v. and all those treated with p.r. diazepam had a recurrence of convulsions occurring at median plasma diazepam concentrations of 157 (range: 67-169) and 172 (range: 74-393) tag ml(-1), respectively. All the children in the i.v. and four in the PR diazepam group who had recurrence of convulsions required treatment. None of the children developed respiratory depression or hypotension. Conclusions Administration of diazepam i.v. or p.r. resulted in achievement of therapeutic concentrations of diazepam rapidly, without significant cardio-respiratory adverse effects. However, following p.r. administration, diazepam did not terminate all convulsions and plasma drug concentrations were more variable
- …