16 research outputs found

    Signature of chaos in gravitational waves from a spinning particle

    Get PDF
    A spinning test particle around a Schwarzschild black hole shows a chaotic behavior, if its spin is larger than a critical value. We discuss whether or not some peculiar signature of chaos appears in the gravitational waves emitted from such a system. Calculating the emitted gravitational waves by use of the quadrupole formula, we find that the energy emission rate of gravitational waves for a chaotic orbit is about 10 times larger than that for a circular orbit, but the same enhancement is also obtained by a regular "elliptic" orbit. A chaotic motion is not always enhance the energy emission rate maximally. As for the energy spectra of the gravitational waves, we find some characteristic feature for a chaotic orbit. It may tell us how to find out a chaotic behavior of the system. Such a peculiar behavior, if it will be found, may also provide us some additional informations to determine parameters of a system such as a spin.Comment: 14 pages, LaTeX, to appear in Phys. Rev.

    The Effects of Tricalcium-Silicate-Nanoparticle-Containing Cement: In Vitro and In Vivo Studies

    Get PDF
    A tricalcium-silicate-nanoparticle-containing cement (Biodentine) was developed to overcome the disadvantages of existing mineral trioxide aggregate (MTA) dental materials. This study aimed at evaluating the effects of Biodentine on the osteogenic differentiation of human periodontal ligament fibroblasts (HPLFs) in vitro and the healing of furcal perforations created experimentally in rat molars in vivo, in comparison to MTA. The in vitro studies performed the following assays: pH measurement using a pH meter, the release of calcium ions using a calcium assay kit, cell attachment and morphology using SEM, cell proliferation using a coulter counter, marker expression using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and cell mineralized deposit formation using Alizarin Red S (ARS) staining. In the in vivo studies, MTA and Biodentine were used to fill the rat molar perforations. Rat molars were processed at 7, 14 and 28 days for analysis of inflammatory processes using hematoxylin and eosin (HE) staining, immunohistochemical staining of Runx2 and tartrate-resistant acid phosphate (TRAP) staining. The results demonstrate that the nanoparticle size distribution of Biodentine is critical for osteogenic potential at an earlier stage compared to MTA. Further studies are required to elucidate the mechanism of action of Biodentine in osteogenic differentiation

    Effects of Excimer Laser Treatment of Zirconia Disks on the Adhesion of L929 Fibroblasts

    No full text
    The adhesion of zirconia and soft tissue is very important for the success of zirconia implants. The aim of this study was to characterize the effects of excimer laser treatment of zirconia on the adhesion of L929 fibroblasts. In this study, polished zirconia disks treated with an excimer laser were the experimental group and untreated zirconia disks were the control group. Surface roughness and contact angles of zirconia disks were measured. mRNA expression levels of integrin β1 and collagen type I α1 in L929 fibroblasts cultured on zirconia disks were measured using qRT-PCR. Cell morphology was evaluated using 3D laser microscopy and the expression of vinculin was characterized using confocal microscopy. There was no significant difference in the surface roughness of zirconia disks, but contact angles were significantly lower. mRNA expression of integrin β1 was significantly higher at 3, 6 and 24 h and of collagen type I α1 was significantly higher at 6 and 24 h. L929 fibroblasts tended to form elongated microspikes and vinculin colocalization in those microspikes. Furthermore, vinculin was strongly expressed in filopodia of L929 fibroblasts at 24 h. These results suggest that excimer laser treatment improves adhesion between zirconia disks and L929 fibroblasts
    corecore