4 research outputs found

    Laser-initiated decomposition products of indocyanine green (ICG) and carbon black sensitized biological tissues

    Get PDF
    Organic dyes have found increasing use a s sensitizers in laser surgical procedures, due to their high optical absorbances. Little is known, however, about the nature of the degradation products formed when these dyes are irradiated with a laser. Previous work in our laboratories has shown that irradiation of polymeric and biological tissues with CO2 and Nd:YAG lasers produces a host of volatile and semivolatile by-products, some of which are known to be potential carcinogens. This work focuses on the identification of the chemical by-products formed by diode laser and Nd:YAG laser irradiation of indocyanine green (ICG) and carbon black based ink sensitized tissues, including bone, tendon and sheep\u27s teeth. Samples were mounted in a 0.5-L Pyrex sample chamber equipped with quartz optical windows, charcoal filtered air inlet and an outlet attached to an appropriate sample trap and a constant flow pump. By-products were analyzed by GC/MS and HPLC. Volatiles identified included benzene and formaldehyde. Semi-volatiles included traces of polycyclic aromatics, arising from the biological matrix and inks, as well as fragments of ICG and the carbon ink components. The significance of these results will be discussed, including the necessity of using appropriate evacuation devices when utilizing lasers for surgical procedures

    Analytical characteristics of the determination of benzene, toluene, ethylbenzene and xylenes in water by headspace solvent microextraction

    No full text
    Headspace solvent microextraction (HSM) is a novel method of sample preparation for chromatographic analysis. It involves exposing a microdrop of high-boiling point organic solvent extruded from the needle tip of a gas chromatographic syringe to the headspace above a sample. Volatile organic compounds are extracted and concentrated in the microdrop. Next, the microdrop is retracted into the microsyringe and injected directly into the chromatograph. HSM has a number of advantages, including renewable drop (no sample carryover), low cost, simplicity and ease of use, short time of analysis, high sensitivity and low detection limits, good precision, minimal solvent use, and no need for instrument modification. This paper presents analytical characteristics of HSM as applied to the determination of benzene, toluene, ethylbenzene and xylenes in water

    Headspace microdrop analysis - An alternative test method for gasoline diluent and benzene, toluene, ethylbenzene and xylenes in used engine oils

    No full text
    The primary standard test method used for the determination of gasoline diluent in used engine oils is method D 3525-93 of the American Society for Testing and Materials (ASTM), which involves direct injection of used oil onto a packed GC column and flame ionization detection. Recently, we have utilized a new headspace sampling method: headspace solvent microextraction (HSM), for GC and GC-MS analysis of gasoline diluent in used engine oils. High resolution capillary columns can be used without the necessity for the use of inlet cryogenic cooling or expensive sampling interfaces. This analytical method, which we generically refer to as headspace microdrop analysis yields results comparable to those obtained using the ASTM method, with the added benefit that it allows the quantification of individual volatile diluent components, including benzene, toluene, ethylbenzene and the xylenes

    Single drop microextraction — Development, applications and future trends

    No full text
    Single drop microextraction (SDME) has emerged over the last 10-15 years as one of the simplest and most easily implemented forms of micro-scale sample cleanup and preconcentration. In the most common arrangement, an ordinary chromatography syringe is used to suspend microliter quantities of extracting solvent either directly immersed in the sample, or in the headspace above the sample. The same syringe is then used to introduce the solvent and extracted analytes into the chromatography system for identification and/or quantitation. This review article summarizes the historical development and various modes of the technique, some theoretical and practical aspects, recent trends and selected applications
    corecore