85 research outputs found

    High frequency sources of gravitational waves

    Full text link
    Sources of high frequency gravitational waves are reviewed. Gravitational collapse, rotational instabilities and oscillations of the remnant compact objects are potentially important sources of gravitational waves. Significant and unique information for the various stages of the collapse, the evolution of protoneutron stars and the details of the equations of state of such objects can be drawn from careful study of the gravitational wave signal.Comment: 7 pages, Class. Quantum Grav. in press. Proceedings of the 5th Amaldi Conferenc

    Nonradial oscillations of quark stars

    Full text link
    Recently, it has been reported that a candidate for a quark star may have been observed. In this article, we pay attention to quark stars with radiation radii in the reported range. We calculate nonradial oscillations of ff-, ww- and wIIw_{\rm II}-modes. Then, we find that the dependence of the ff-mode quasi-normal frequency on the bag constant and stellar radiation radius is very strong and different from that of the lowest wIIw_{\rm II}-mode quasi-normal frequency. Furthermore we deduce a new empirical formula between the ff-mode frequency of gravitational waves and the parameter of the equation of state for quark stars. The observation of gravitational waves both of the ff-mode and of the lowest wIIw_{\rm II}-mode would provide a powerful probe for the equation of state of quark matter and the properties of quark stars.Comment: 13 pages, 6 figures, accepted for publication in Phys.Rev.

    Asymptotic quasinormal modes of Reissner-Nordstr\"om and Kerr black holes

    Full text link
    According to a recent proposal, the so-called Barbero-Immirzi parameter of Loop Quantum Gravity can be fixed, using Bohr's correspondence principle, from a knowledge of highly-damped black hole oscillation frequencies. Such frequencies are rather difficult to compute, even for Schwarzschild black holes. However, it is now quite likely that they may provide a fundamental link between classical general relativity and quantum theories of gravity. Here we carry out the first numerical computation of very highly damped quasinormal modes (QNM's) for charged and rotating black holes. In the Reissner-Nordstr\"om case QNM frequencies and damping times show an oscillatory behaviour as a function of charge. The oscillations become faster as the mode order increases. At fixed mode order, QNM's describe spirals in the complex plane as the charge is increased, tending towards a well defined limit as the hole becomes extremal. Kerr QNM's have a similar oscillatory behaviour when the angular index m=0m=0. For l=m=2l=m=2 the real part of Kerr QNM frequencies tends to 2Ω2\Omega, Ω\Omega being the angular velocity of the black hole horizon, while the asymptotic spacing of the imaginary parts is given by 2πTH2\pi T_H.Comment: 13 pages, 7 figures. Added result on the asymptotic spacing of the imaginary part, minor typos correcte

    Scattering of particles by neutron stars: Time-evolutions for axial perturbations

    Get PDF
    The excitation of the axial quasi-normal modes of a relativistic star by scattered particles is studied by evolving the time dependent perturbation equations. This work is the first step towards the understanding of more complicated perturbative processes, like the capture or the scattering of particles by rotating stars. In addition, it may serve as a test for the results of the full nonlinear evolution of binary systems.Comment: 7 pages, 5 figures, Phys. Rev. D in pres

    Quasinormal modes of a Schwarzschild black hole surrounded by free static spherically symmetric quintessence: Electromagnetic perturbations

    Full text link
    In this paper, we evaluated the quasinormal modes of electromagnetic perturbation in a Schwarzschild black hole surrounded by the static spherically symmetric quintessence by using the third-order WKB approximation when the quintessential state parameter wq w_{q} in the range of 1/3<wq<0-1/3<w_{q}<0. Due to the presence of quintessence, Maxwell field damps more slowly. And when at 1<wq<1/3-1<w_{q}<-1/3, it is similar to the black hole solution in the ds/Ads spacetime. The appropriate boundary conditions need to be modified.Comment: 6 pages, 3 figure

    Numerical simulation of the massive scalar field evolution in the Reissner-Nordstr\"{o}m black hole background

    Full text link
    We studied the massive scalar wave propagation in the background of Reissner-Nordstr\"{o}m black hole by using numerical simulations. We learned that the value MmMm plays an important role in determining the properties of the relaxation of the perturbation. For Mm<<1Mm << 1 the relaxation process depends only on the field parameter and does not depend on the spacetime parameters. For Mm>>1Mm >> 1, the dependence of the relaxation on the black hole parameters appears. The bigger mass of the black hole, the faster the perturbation decays. The difference of the relaxation process caused by the black hole charge QQ has also been exhibited.Comment: Accepted for publication in Phys. Rev.

    Massive Charged Scalar Quasinormal Modes of Reissner-N\"ordstrom Black Hole Surrounded by Quintessence

    Full text link
    We evaluate the complex frequencies of the normal modes for the massive charged scalar field perturbations around a Reissner-N\"ordstrom black hole surrounded by a static and spherically symmetric quintessence using third order WKB approximation approach. Due to the presence of quintessence, quasinormal frequencies damp more slowly. We studied the variation of quasinormal frequencies with charge of the black bole, mass and charge of perturbating scalar field and the quintessential state parameter.Comment: 9 pages, 9 figures and one tabl

    Restricting quark matter models by gravitational wave observation

    Full text link
    We consider the possibilities for obtaining information about the equation of state for quark matter by using future direct observational data on gravitational waves. We study the nonradial oscillations of both fluid and spacetime modes of pure quark stars. If we observe the ff and the lowest wIIw_{\rm II} modes from quark stars, by using the simultaneously obtained radiation radius we can constrain the bag constant BB with reasonable accuracy, independently of the ss quark mass.Comment: To appear in Phys. Rev.

    Highly damped quasinormal modes of Kerr black holes

    Full text link
    Motivated by recent suggestions that highly damped black hole quasinormal modes (QNM's) may provide a link between classical general relativity and quantum gravity, we present an extensive computation of highly damped QNM's of Kerr black holes. We do not limit our attention to gravitational modes, thus filling some gaps in the existing literature. The frequency of gravitational modes with l=m=2 tends to \omega_R=2 \Omega, \Omega being the angular velocity of the black hole horizon. If Hod's conjecture is valid, this asymptotic behaviour is related to reversible black hole transformations. Other highly damped modes with m>0 that we computed do not show a similar behaviour. The real part of modes with l=2 and m<0 seems to asymptotically approach a constant value \omega_R\simeq -m\varpi, \varpi\simeq 0.12 being (almost) independent of a. For any perturbing field, trajectories in the complex plane of QNM's with m=0 show a spiralling behaviour, similar to the one observed for Reissner-Nordstrom (RN) black holes. Finally, for any perturbing field, the asymptotic separation in the imaginary part of consecutive modes with m>0 is given by 2\pi T_H (T_H being the black hole temperature). We conjecture that for all values of l and m>0 there is an infinity of modes tending to the critical frequency for superradiance (\omega_R=m) in the extremal limit. Finally, we study in some detail modes branching off the so--called ``algebraically special frequency'' of Schwarzschild black holes. For the first time we find numerically that QNM multiplets emerge from the algebraically special Schwarzschild modes, confirming a recent speculation.Comment: 19 pages, 11 figures. Minor typos corrected. Updated references to take into account some recent development

    Dynamical evolution and leading order gravitational wave emission of Riemann-S binaries

    Full text link
    An approximate strategy for studying the evolution of binary systems of extended objects is introduced. The stars are assumed to be polytropic ellipsoids. The surfaces of constant density maintain their ellipsoidal shape during the time evolution. The equations of hydrodynamics then reduce to a system of ordinary differential equations for the internal velocities, the principal axes of the stars and the orbital parameters. The equations of motion are given within Lagrangian and Hamiltonian formalism. The special case when both stars are axially symmetric fluid configurations is considered. Leading order gravitational radiation reaction is incorporated, where the quasi-static approximation is applied to the internal degrees of freedom of the stars. The influence of the stellar parameters, in particular the influence of the polytropic index nn, on the leading order gravitational waveforms is studied.Comment: 31 pages, 7 figures, typos correcte
    corecore