44 research outputs found
Genetic and Linguistic Coevolution in Northern Island Melanesia
Recent studies have detailed a remarkable degree of genetic and linguistic diversity in Northern Island Melanesia. Here we utilize that diversity to examine two models of genetic and linguistic coevolution. The first model predicts that genetic and linguistic correspondences formed following population splits and isolation at the time of early range expansions into the region. The second is analogous to the genetic model of isolation by distance, and it predicts that genetic and linguistic correspondences formed through continuing genetic and linguistic exchange between neighboring populations. We tested the predictions of the two models by comparing observed and simulated patterns of genetic variation, genetic and linguistic trees, and matrices of genetic, linguistic, and geographic distances. The data consist of 751 autosomal microsatellites and 108 structural linguistic features collected from 33 Northern Island Melanesian populations. The results of the tests indicate that linguistic and genetic exchange have erased any evidence of a splitting and isolation process that might have occurred early in the settlement history of the region. The correlation patterns are also inconsistent with the predictions of the isolation by distance coevolutionary process in the larger Northern Island Melanesian region, but there is strong evidence for the process in the rugged interior of the largest island in the region (New Britain). There we found some of the strongest recorded correlations between genetic, linguistic, and geographic distances. We also found that, throughout the region, linguistic features have generally been less likely to diffuse across population boundaries than genes. The results from our study, based on exceptionally fine-grained data, show that local genetic and linguistic exchange are likely to obscure evidence of the early history of a region, and that language barriers do not particularly hinder genetic exchange. In contrast, global patterns may emphasize more ancient demographic events, including population splits associated with the early colonization of major world regions
Mitochondrial Genetic Diversity and its Determinants in Island Melanesia
For a long time, many physical anthropologists and human geneticists considered Island Melanesian populations to be genetically impoverished, dominated by the effects of random genetic drift because of their small sizes, internally very homogeneous, and therefore of little relevance in reconstructing past human migrations. This view is changing. Here we present the developing detailed picture of mitochondrial DNA (mtDNA) variation in eastern New Guinea and Island Melanesia that reflects linguistic distinctions within the region as well as considerable island-by-island isolation. It also appears that the patterns of variation reflect marital migration distinctions between bush and beach populations. We have identified a number of regionally specific mtDNA variants. We also question the widely accepted hypothesis that the mtDNA variant referred to as the ‘Polynesian Motif’ (or alternatively the ‘Austronesian Motif’) developed outside this region somewhere to the west. It may well have first appeared among certain non-Austronesian speaking groups in eastern New Guinea or the Bismarcks. Overall, the developing mtDNA pattern appears to be more easily reconciled with that of other genetic and biometric variables
The Genetic Structure of Pacific Islanders
Human genetic diversity in the Pacific has not been adequately sampled, particularly in Melanesia. As a result, population relationships there have been open to debate. A genome scan of autosomal markers (687 microsatellites and 203 insertions/deletions) on 952 individuals from 41 Pacific populations now provides the basis for understanding the remarkable nature of Melanesian variation, and for a more accurate comparison of these Pacific populations with previously studied groups from other regions. It also shows how textured human population variation can be in particular circumstances. Genetic diversity within individual Pacific populations is shown to be very low, while differentiation among Melanesian groups is high. Melanesian differentiation varies not only between islands, but also by island size and topographical complexity. The greatest distinctions are among the isolated groups in large island interiors, which are also the most internally homogeneous. The pattern loosely tracks language distinctions. Papuan-speaking groups are the most differentiated, and Austronesian or Oceanic-speaking groups, which tend to live along the coastlines, are more intermixed. A small “Austronesian” genetic signature (always <20%) was detected in less than half the Melanesian groups that speak Austronesian languages, and is entirely lacking in Papuan-speaking groups. Although the Polynesians are also distinctive, they tend to cluster with Micronesians, Taiwan Aborigines, and East Asians, and not Melanesians. These findings contribute to a resolution to the debates over Polynesian origins and their past interactions with Melanesians. With regard to genetics, the earlier studies had heavily relied on the evidence from single locus mitochondrial DNA or Y chromosome variation. Neither of these provided an unequivocal signal of phylogenetic relations or population intermixture proportions in the Pacific. Our analysis indicates the ancestors of Polynesians moved through Melanesia relatively rapidly and only intermixed to a very modest degree with the indigenous populations there
Human urocortin II, a selective agonist for the type 2 corticotropinreleasing factor receptor, decreases feeding and drinking in the rat
ABSTRACT Corticotropin-releasing factor (CRF) has been hypothesized to modulate consummatory behavior through the Type 2 CRF (CRF 2 ) receptor. However, behavioral functions subserved by the CRF 2 receptor remain poorly understood. Recently, human urocortin II (hUcn II), a selective CRF 2 receptor agonist, was identified. To study the effects of this neuropeptide on ingestive behavior, we examined the effects of centrally infused hUcn II (i.c.v. 0, 0.01, 0.1, 1.0, 10.0 g) on the microstructure of nosepoke responding for food and water in nondeprived, male rats. Malaise-inducing properties of the peptide were monitored using conditioned taste aversion (CTA) testing. To identify potential sites of action, central induction of Fos protein expression was examined. hUcn II dose dependently reduced the quantity and duration of responding for food and water at doses lower (0.01-1.0 g) than that forming a CTA (10 g). Effects were most evident during hours 4 to 6 of the dark cycle. Meal pattern analysis showed that hUcn II potently (0.1 g) increased the satiating value of food. Rats ate and drank smaller and shorter meals without changing meal frequency. Rats also ate more slowly. hUcn II induced Fos in regions involved in visceral sensory processing and autonomic/neuroendocrine regulation and resembling those activated by appetite suppressants. hUcn II is a promising neuropeptide for investigating the role of the CRF 2 receptor in ingestive behavior. Corticotropin-releasing factor (CRF) is hypothesized to mediate behavioral, autonomic, endocrine, and immunological responses to stres
A Neolithic expansion, but strong genetic structure, in the independent history of New Guinea.
New Guinea shows human occupation since ~50 thousand years ago (ka), independent adoption of plant cultivation ~10 ka, and great cultural and linguistic diversity today. We performed genome-wide single-nucleotide polymorphism genotyping on 381 individuals from 85 language groups in Papua New Guinea and find a sharp divide originating 10 to 20 ka between lowland and highland groups and a lack of non-New Guinean admixture in the latter. All highlanders share ancestry within the last 10 thousand years, with major population growth in the same period, suggesting population structure was reshaped following the Neolithic lifestyle transition. However, genetic differentiation between groups in Papua New Guinea is much stronger than in comparable regions in Eurasia, demonstrating that such a transition does not necessarily limit the genetic and linguistic diversity of human societies
Melanesian mtDNA Complexity
Melanesian populations are known for their diversity, but it has been hard to grasp the pattern of the variation or its underlying dynamic. Using 1,223 mitochondrial DNA (mtDNA) sequences from hypervariable regions 1 and 2 (HVR1 and HVR2) from 32 populations, we found the among-group variation is structured by island, island size, and also by language affiliation. The more isolated inland Papuan-speaking groups on the largest islands have the greatest distinctions, while shore dwelling populations are considerably less diverse (at the same time, within-group haplotype diversity is less in the most isolated groups). Persistent differences between shore and inland groups in effective population sizes and marital migration rates probably cause these differences. We also add 16 whole sequences to the Melanesian mtDNA phylogenies. We identify the likely origins of a number of the haplogroups and ancient branches in specific islands, point to some ancient mtDNA connections between Near Oceania and Australia, and show additional Holocene connections between Island Southeast Asia/Taiwan and Island Melanesia with branches of haplogroup E. Coalescence estimates based on synonymous transitions in the coding region suggest an initial settlement and expansion in the region at ∼30–50,000 years before present (YBP), and a second important expansion from Island Southeast Asia/Taiwan during the interval ∼3,500–8,000 YBP. However, there are some important variance components in molecular dating that have been overlooked, and the specific nature of ancestral (maternal) Austronesian influence in this region remains unresolved
World Health Organization and knowledge translation in maternal, newborn, child and adolescent health and nutrition.
The World Health Organization (WHO) has a mandate to promote maternal and child health and welfare through support to governments in the form of technical assistance, standards, epidemiological and statistical services, promoting teaching and training of healthcare professionals and providing direct aid in emergencies. The Strategic and Technical Advisory Group of Experts (STAGE) for maternal, newborn, child and adolescent health and nutrition (MNCAHN) was established in 2020 to advise the Director-General of WHO on issues relating to MNCAHN. STAGE comprises individuals from multiple low-income and middle-income and high-income countries, has representatives from many professional disciplines and with diverse experience and interests.Progress in MNCAHN requires improvements in quality of services, equity of access and the evolution of services as technical guidance, community needs and epidemiology changes. Knowledge translation of WHO guidance and other guidelines is an important part of this. Countries need effective and responsive structures for adaptation and implementation of evidence-based interventions, strategies to improve guideline uptake, education and training and mechanisms to monitor quality and safety. This paper summarises STAGE's recommendations on how to improve knowledge translation in MNCAHN. They include support for national and regional technical advisory groups and subnational committees that coordinate maternal and child health; support for national plans for MNCAHN and their implementation and monitoring; the production of a small number of consolidated MNCAHN guidelines to promote integrated and holistic care; education and quality improvement strategies to support guidelines uptake; monitoring of gaps in knowledge translation and operational research in MNCAHN
Immunogenetic Studies of Two Recently Contacted Populations from Papua New Guinea
We have examined the HLA profiles of the Hagahai and the Haruai people, two linguistic groups in the remote western Schrader mountains who have only recently had administrative contact, and compared them with those of other populations in Papua New Guinea. None of the antigens detected in the two groups was found missing in other populations although significant differences in allele frequencies exist. Recent contact history does not appear to have played any significant role in shaping these differences. Similarly, no evidence of differential selection pressures contributing to HLA heterogeneity was found. The genetic profiles of the Hagahai and the Haruai appear to be a result of recent admixture between unrelated, genetically disparate groups