114 research outputs found

    Search for three alpha states around an 16^{16}O core in 28^{28}Si

    Full text link
    We investigate the existence of weakly coupled gas-like states comprised of three α\alpha particles around an 16^{16}O core in 28^{28}Si. We calculate the excited states in 28^{28}Si using the multi-configuration mixing method based on the 16^{16}O + 3α\alpha cluster model. We also include the 16^{16}O + 12^{12}C and 24^{24}Mg + α\alpha basis wave functions prepared by the generator coordinate method. To identify the gas-like states, we calculate the isoscalar monopole transition strengths and the overlap of the obtained states with the geometrical cluster wave function and the Tohsaki-Horiuchi-Schuck-R\"{o}pke (THSR) wave function. The results show that the obtained fourth and twelfth states significantly overlap with the THSR wave function. These two states clearly coexist with the 16^{16}O + 12^{12}C cluster states, emerging at similar energies. The calculated isoscalar monopole strengths between those two states are significantly large, indicating that the states are members of the excitation mode. Furthermore, the calculated root-mean-squared (RMS) radii for these states also suggest that a layer of gas-like three α\alpha particles could exist around the surface of the 16^{16}O core, which can be described as a "two-dimensional gas" in the intermediate state before the Hoyle-like three α\alpha states emerge.Comment: 5 pages, 3 figure

    Structure of 10Be from the 12C 12C,14O 10Be reaction

    Get PDF
    The 12C 12C,14O two proton pick up reaction has been measured at 211.4 MeV incident energy to study the structure of states of 10Be up to excitation energies of 12 MeV. The measured partial angular distributions show pronounced oscillatory shapes, which were described by coupled reaction channels calculations. Spin parity assignments could be derived from these characteristic shapes and two definite assignments have been made. The state at 11.8 MeV has been identified as the 4 member of the ground state band, and the state at 10.55 MeV is assigned J pi 3 . At 5.96 MeV only the 1 1 member of the known 2 2 1 1 doublet is populated. The angular distribution of the peak at 9.50 MeV, which consists of several unresolved states, has been unfolded using contributions from known states at 9.56 MeV, 2 , and 9.27 MeV, 4 . The inclusion of a state at 9.4 MeV reported by Daito it et al. from the 10B t,3He 10Be reaction and tentatively assigned 3 improved the fit considerably. A K 2 band is formed with the 2 2 state as the band head and the 3 state as the second member. The structures of the K pi 0 1, 2 2, and 1 1 bands are discusse

    Alpha-cluster Condensations in Nuclei and Experimental Approaches for their Studies

    Full text link
    The formation of alpha-clusters in nuclei close to the decay thresholds is discussed. These states can be considered to be boson-condensates, which are formed in a second order phase transition in a mixture of nucleons and alpha-particles. The de Broglie wavelength of the alpha-particles is larger than the nuclear diameter, therefore the coherent properties of the alpha-particles give particular effects for the study of such states. The states are above the thresholds thus the enhanced emission of multiple-alphas into the same direction is observed. The probability for the emission of multiple-alphas is not described by Hauser-Feshbach theory for compound nucleus decay.Comment: 21 pages, 12 figures

    Coplanar ternary decay of hyper-deformed 56^{56}Ni

    Get PDF
    Ternary fission events from the decay of 56^{56}Ni compound nuclei, formed in the 32^{32}S + 24^{24}Mg reaction at Elab(32S)E_{lab}(^{32}S) = 163.5 MeV, have been measured in a unique set-up consisting of two large area position sensitive (x,y) gas detector telescopes. Very narrow out-of-plane correlations are observed for two fragments emitted in either purely binary events or in events with a missing mass consisting of 2 and 3 α\alpha-particles. These correlations are interpreted as ternary fission decay from compound nuclei at high angular momenta through an elongated (hyper-deformed) shape with very large moments of inertia, where the lighter mass in the neck region remains at rest

    Nuclear Alpha-Particle Condensates

    Full text link
    The α\alpha-particle condensate in nuclei is a novel state described by a product state of α\alpha's, all with their c.o.m. in the lowest 0S orbit. We demonstrate that a typical α\alpha-particle condensate is the Hoyle state (Ex=7.65E_{x}=7.65 MeV, 02+0^+_2 state in 12^{12}C), which plays a crucial role for the synthesis of 12^{12}C in the universe. The influence of antisymmentrization in the Hoyle state on the bosonic character of the α\alpha particle is discussed in detail. It is shown to be weak. The bosonic aspects in the Hoyle state, therefore, are predominant. It is conjectured that α\alpha-particle condensate states also exist in heavier nαn\alpha nuclei, like 16^{16}O, 20^{20}Ne, etc. For instance the 06+0^+_6 state of 16^{16}O at Ex=15.1E_{x}=15.1 MeV is identified from a theoretical analysis as being a strong candidate of a 4α4\alpha condensate. The calculated small width (34 keV) of 06+0^+_6, consistent with data, lends credit to the existence of heavier Hoyle-analogue states. In non-self-conjugated nuclei such as 11^{11}B and 13^{13}C, we discuss candidates for the product states of clusters, composed of α\alpha's, triton's, and neutrons etc. The relationship of α\alpha-particle condensation in finite nuclei to quartetting in symmetric nuclear matter is investigated with the help of an in-medium modified four-nucleon equation. A nonlinear order parameter equation for quartet condensation is derived and solved for α\alpha particle condensation in infinite nuclear matter. The strong qualitative difference with the pairing case is pointed out.Comment: 71 pages, 41 figures, review article, to be published in "Cluster in Nuclei (Lecture Notes in Physics) - Vol.2 -", ed. by C. Beck, (Springer-Verlag, Berlin, 2011

    Molecular and cluster structures in <sup>18</sup>O

    Get PDF
    We have studied the multi-nucleon transfer reaction 12C ( 7Li ,p) at E lab = 44 MeV, populating states in the oxygen isotope 18O . The experiments were performed at the Tandem accelerator of the Maier-Leibniz Laboratory in Munich using the high-resolution Q3D magnetic spectrograph. States were populated up to an excitation energy of 21.2MeV with an overall energy resolution of 45keV, and 30 new states of 18O have been identified. The structure of the rotational bands observed is discussed in terms of cluster bands with the underlying cluster structures: 14C \displaystyle \otimes \displaystyle \alphaand 12C ⊗ 2n ⊗ α \alpha . Because of the broken intrinsic reflection symmetry in these structures the corresponding rotational bands appear as parity doublets

    Disentangling unclear nuclear breakup channels of beryllium-9 using the three-axis Dalitz plot

    Get PDF
    The three-axis Dalitz plot has been applied to the breakup of a nucleus into unequal mass fragments for the first time. The Dalitz plot allows clear identification of the various breakup channels of 9Be → 2α + n process. The method has allowed the branching ratio for the 6.38 MeV level in9Be to be provisionally calculated when examining the 9Be(4He, α)ααn reaction. The effects of non-uniform angular distributions on the Dalitz plot must still be properly investigated along with the effects of contaminant reaction channels. It is proposed that this method could be used to determine the breakup branching ratio of a newly-measured level in this nucleus

    alpha-cluster structure of 18Ne

    Full text link
    In this work we study alpha-clustering in 18Ne and compare it with what is known about clustering in the mirror nucleus 18O. The excitation function of 18Ne was measured in inverse kinematics from the resonant elastic scattering reaction of 14O on 4He in the excitation energy range from 8 to 17 MeV, using the active target TexAT. The analysis was performed using a multi-channel R-matrix approach. Detailed spectroscopic information is obtained from the R-matrix analysis: excitation energy of the states, spin and parity as well as partial alpha and total widths. This information is compared with theoretical models and previous data. Clustering structures appear to be robust and mostly isospin symmetric. A good correspondence was found between the levels in 18O and 18Ne. We carried out an extensive shell model analysis of the experimental data. This comparison suggests that strongly clustered states remain organized in relation to the corresponding reaction channel identified by the number of nodes in the relative alpha plus core wave function. The agreement between theory and experiment is very good and especially useful when it comes to understanding the clustering strength distribution. The comparison of the experimental data with theory shows that certain states, especially at high excitation energies, are significantly more clustered than predicted. This indicates that the structure of these states is collective and is aligned towards the corresponding alpha reaction channel
    • …
    corecore