5,932 research outputs found

    The influence of forward-scattered light in transmission measurements of (exo)planetary atmospheres

    Full text link
    [Abridged] The transmission of light through a planetary atmosphere can be studied as a function of altitude and wavelength using stellar or solar occultations, giving often unique constraints on the atmospheric composition. For exoplanets, a transit yields a limb-integrated, wavelength-dependent transmission spectrum of an atmosphere. When scattering haze and/or cloud particles are present in the planetary atmosphere, the amount of transmitted flux not only depends on the total optical thickness of the slant light path that is probed, but also on the amount of forward-scattering by the scattering particles. Here, we present results of calculations with a three-dimensional Monte Carlo code that simulates the transmitted flux during occultations or transits. For isotropically scattering particles, like gas molecules, the transmitted flux appears to be well-described by the total atmospheric optical thickness. Strongly forward-scattering particles, however, such as commonly found in atmospheres of Solar System planets, can increase the transmitted flux significantly. For exoplanets, such added flux can decrease the apparent radius of the planet by several scale heights, which is comparable to predicted and measured features in exoplanet transit spectra. We performed detailed calculations for Titan's atmosphere between 2.0 and 2.8 micron and show that haze and gas abundances will be underestimated by about 8% if forward-scattering is ignored in the retrievals. At shorter wavelengths, errors in the gas and haze abundances and in the spectral slope of the haze particles can be several tens of percent, also for other Solar System planetary atmospheres. We also find that the contribution of forward-scattering can be fairly well described by modelling the atmosphere as a plane-parallel slab.Comment: Icarus, accepted for publicatio

    Effects of self-phase modulation on weak nonlinear optical quantum gates

    Full text link
    A possible two-qubit gate for optical quantum computing is the parity gate based on the weak Kerr effect. Two photonic qubits modulate the phase of a coherent state, and a quadrature measurement of the coherent state reveals the parity of the two qubits without destroying the photons. This can be used to create so-called cluster states, a universal resource for quantum computing. Here, the effect of self-phase modulation on the parity gate is studied, introducing generating functions for the Wigner function of a modulated coherent state. For materials with non-EIT-based Kerr nonlinearities, there is typically a self-phase modulation that is half the magnitude of the cross-phase modulation. Therefore, this effect cannot be ignored. It is shown that for a large class of physical implementations of the phase modulation, the quadrature measurement cannot distinguish between odd and even parity. Consequently, weak nonlinear parity gates must be implemented with physical systems where the self-phase modulation is negligable.Comment: 7 pages, 4 figure

    Information gap for classical and quantum communication in a Schwarzschild spacetime

    Get PDF
    Communication between a free-falling observer and an observer hovering above the Schwarzschild horizon of a black hole suffers from Unruh-Hawking noise, which degrades communication channels. Ignoring time dilation, which affects all channels equally, we show that for bosonic communication using single and dual rail encoding the classical channel capacity reaches a finite value and the quantum coherent information tends to zero. We conclude that classical correlations still exist at infinite acceleration, whereas the quantum coherence is fully removed.Comment: 5 pages, 4 figure

    A Quantum Rosetta Stone for Interferometry

    Get PDF
    Heisenberg-limited measurement protocols can be used to gain an increase in measurement precision over classical protocols. Such measurements can be implemented using, e.g., optical Mach-Zehnder interferometers and Ramsey spectroscopes. We address the formal equivalence between the Mach-Zehnder interferometer, the Ramsey spectroscope, and the discrete Fourier transform. Based on this equivalence we introduce the ``quantum Rosetta stone'', and we describe a projective-measurement scheme for generating the desired correlations between the interferometric input states in order to achieve Heisenberg-limited sensitivity. The Rosetta stone then tells us the same method should work in atom spectroscopy.Comment: 8 pages, 4 figure

    Super-resolving multi-photon interferences with independent light sources

    Full text link
    We propose to use multi-photon interferences from statistically independent light sources in combination with linear optical detection techniques to enhance the resolution in imaging. Experimental results with up to five independent thermal light sources confirm this approach to improve the spatial resolution. Since no involved quantum state preparation or detection is required the experiment can be considered an extension of the Hanbury Brown and Twiss experiment for spatial intensity correlations of order N>2

    The creation of large photon-number path entanglement conditioned on photodetection

    Get PDF
    Large photon-number path entanglement is an important resource for enhanced precision measurements and quantum imaging. We present a general constructive protocol to create any large photon number path-entangled state based on the conditional detection of single photons. The influence of imperfect detectors is considered and an asymptotic scaling law is derived.Comment: 6 pages, 4 figure

    Partial Wave Analyses of the pp data alone and of the np data alone

    Get PDF
    We present results of the Nijmegen partial-wave analyses of all NN scattering data below Tlab = 500 MeV. We have been able to extract for the first time the important np phase shifts for both I = 0 and I = 1 from the np scattering data alone. This allows us to study the charge independence breaking between the pp and np I = 1 phases. In our analyses we obtain for the pp data chi^2_{min}/Ndf = 1.13 and for the np data chi^2_{min}/Ndf = 1.12.Comment: Report THEF-NYM 94.04, 4 pages LaTeX, one PostScript figure appended. Contribution to the 14th Few-Body Conference, May 26 - 31, Williamsburg, V

    The GROUSE project III: Ks-band observations of the thermal emission from WASP-33b

    Get PDF
    In recent years, day-side emission from about a dozen hot Jupiters has been detected through ground-based secondary eclipse observations in the near-infrared. These near-infrared observations are vital for determining the energy budgets of hot Jupiters, since they probe the planet's spectral energy distribution near its peak. The aim of this work is to measure the Ks-band secondary eclipse depth of WASP-33b, the first planet discovered to transit an A-type star. This planet receives the highest level of irradiation of all transiting planets discovered to date. Furthermore, its host-star shows pulsations and is classified as a low-amplitude delta-Scuti. As part of our GROUnd-based Secondary Eclipse (GROUSE) project we have obtained observations of two separate secondary eclipses of WASP-33b in the Ks-band using the LIRIS instrument on the William Herschel Telescope (WHT). The telescope was significantly defocused to avoid saturation of the detector for this bright star (K~7.5). To increase the stability and the cadence of the observations, they were performed in staring mode. We collected a total of 5100 and 6900 frames for the first and the second night respectively, both with an average cadence of 3.3 seconds. On the second night the eclipse is detected at the 12-sigma level, with a measured eclipse depth of 0.244+0.027-0.020 %. This eclipse depth corresponds to a brightness temperature of 3270+115-160 K. The measured brightness temperature on the second night is consistent with the expected equilibrium temperature for a planet with a very low albedo and a rapid re-radiation of the absorbed stellar light. For the other night the short out-of-eclipse baseline prevents good corrections for the stellar pulsations and systematic effects, which makes this dataset unreliable for eclipse depth measurements. This demonstrates the need of getting a sufficient out-of-eclipse baseline.Comment: 12 pages, 10 figures. Accepted for publication in Astronomy and Astrophysic

    Carbon monoxide and water vapor in the atmosphere of the non-transiting exoplanet HD 179949 b

    Get PDF
    (Abridged) In recent years, ground-based high-resolution spectroscopy has become a powerful tool for investigating exoplanet atmospheres. It allows the robust identification of molecular species, and it can be applied to both transiting and non-transiting planets. Radial-velocity measurements of the star HD 179949 indicate the presence of a giant planet companion in a close-in orbit. Here we present the analysis of spectra of the system at 2.3 micron, obtained at a resolution of R~100,000, during three nights of observations with CRIRES at the VLT. We targeted the system while the exoplanet was near superior conjunction, aiming to detect the planet's thermal spectrum and the radial component of its orbital velocity. We detect molecular absorption from carbon monoxide and water vapor with a combined S/N of 6.3, at a projected planet orbital velocity of K_P = (142.8 +- 3.4) km/s, which translates into a planet mass of M_P = (0.98 +- 0.04) Jupiter masses, and an orbital inclination of i = (67.7 +- 4.3) degrees, using the known stellar radial velocity and stellar mass. The detection of absorption features rather than emission means that, despite being highly irradiated, HD 179949 b does not have an atmospheric temperature inversion in the probed range of pressures and temperatures. Since the host star is active (R_HK > -4.9), this is in line with the hypothesis that stellar activity damps the onset of thermal inversion layers owing to UV flux photo-dissociating high-altitude, optical absorbers. Finally, our analysis favors an oxygen-rich atmosphere for HD 179949 b, although a carbon-rich planet cannot be statistically ruled out based on these data alone.Comment: 10 pages, 9 figures. Accepted for publication in Astronomy and Astrophysic

    From Linear Optical Quantum Computing to Heisenberg-Limited Interferometry

    Get PDF
    The working principles of linear optical quantum computing are based on photodetection, namely, projective measurements. The use of photodetection can provide efficient nonlinear interactions between photons at the single-photon level, which is technically problematic otherwise. We report an application of such a technique to prepare quantum correlations as an important resource for Heisenberg-limited optical interferometry, where the sensitivity of phase measurements can be improved beyond the usual shot-noise limit. Furthermore, using such nonlinearities, optical quantum nondemolition measurements can now be carried out at the single-photon level.Comment: 10 pages, 5 figures; Submitted to a Special Issue of J. Opt. B on "Fluctuations and Noise in Photonics and Quantum Optics" (Herman Haus Memorial Issue); v2: minor change
    • …
    corecore