26 research outputs found

    CFD-Based Prediction of Combustion Dynamics and Nonlinear Flame Transfer Functions for a Swirl-Stabilized High-Pressure Combustor

    Get PDF
    Thermoacoustic instabilities in gasturbine combustor systems can be predicted in the design phase with a thermoacoustic network model. In this model, the coupling between acoustic pressure fluctuations and the combustion rate is described by the Flame Transfer Function. The present paper introduces a new, efficient, and robust method for deriving the FTF from CFD predictions by means of a discrete multi-frequency sinusoidal fuel flow excitation method. The CFD-based FTF result compares well with experimental data for the time delay, but for the gain, only up to 400 Hz. Above 400 Hz, the CFD result reveals a smooth low-amplitude gain, which is not found in the measured data. A novel, accurate continuous correlation function for the FTF gain is computed based on the results for discrete frequencies. When this is implemented into a 1D acoustic network model, the stability map shows, below 600 Hz, two eigenfrequencies, by both the experiment and CFD-based FTF, that are identical. The CFD-based FTF correctly predicts marginal activity at the highest eigenfrequency, while the experimentally based FTF suggests an unstable operation. The unstable operation is not observed in the experiments. This suggests that the CFD-based FTF is also correct for high frequencies.</p

    Vibration of the liner in an industrial combustion system due to an acoustic field

    Get PDF
    The subject of this paper is a numerical study of the properties of the liner of a test rig to be built in the future. The test-rig consists of a flexible tube of square crosssection surrounded by a pressure vessel, also with a square cross-section. At first instance, a two dimensional structural analytical model of the cross-section is made. The influence of the air between liner and pressure vessel and that within the liner on the vibration of the liner is studied using a coupled 2D finite element model. Furthermore the influence of the vibration of the liner on the acoustics of the setup is studied. After this the problem is extended to three dimensions and again the influence of the cavity surrounding the liner is analyzed. Both 2D and 3D results are compared. The cavities are found to substantially influence the structural behavior and therefore they cannot be neglected in predicting the behavior of the liner

    Numerical simulation of sound propagation through the can-annular combustor exit

    Get PDF
    Thermo-acoustic instabilities in high power density gas turbine engines have to be predicted in order to avoid unexpected shutdown events. To predict these instabilities, the acoustics behavior of the combustion system needs to be analyzed. The work presented in this paper on combustor-turbine interaction is focused on reflection coefficient analysis. The study is based on a simplified two-dimensional (2D) geometry representing the vane section and another geometry corresponding to a real engine alike combustor/turbine design. Compressible Large Eddy Simulation (LES) is applied based on the open source Computational Fluid Dynamics package OpenFOAM. A forced response approach is used imposing a sound wave excitation at the inlet of the combustion chamber. The applied Non-Reflecting Boundary Conditions (NRBC) are verified for correct behavior and plausibility of the acoustic set up. Multi-harmonic excitation with small amplitudes is used to preserve linearity. The numerical results are compared to analytical formulae in order to test the validity of both approaches for the chosen geometries

    Characterisation of Interaction between Combustion Dynamics and Equivalence Ratio oscillations in a pressurised combustor

    Get PDF
    In regular operation, all gas turbine combustors have a significant spontaneous noise level induced by the turbulent high power flame. This noise is characteristic for the operation as it is the result of the interaction between turbulence and combustion. Pressure fluctuations may also be generated by thermoacoustic instabilities induced by amplification by the flame of the acoustic field in the combustor. This paper focuses on the characterisation of the latter process, the combustion dynamics, in a pressurized premixed natural gas combustor. In order to predict the thermo-acoustically unstable operating ranges of modern gas-turbines with the use of an acoustic network model, it is essential to determine accurately the flame transfer function. This transfer function gives the relationship between a perturbation upstream of the flame and its combustion response, leading to acoustic forcing. In this paper, the flame transfer function is obtained by experimental means in a combustor test rig. This test rig was built in the framework of the European DESIRE project, and has the ability to perform thermo-acoustic measurements up to an absolute pressure of 5 bars. The maximum power of the setup is 500 kW. The paper presents a method to determine the flame transfer function by factorizing it in six subfunctions. Systematically these subfunctions are determined. With the method presented, acoustic measurements on the steady, unperturbed flame and on the unsteady, actively perturbed flame are performed. The effect of pressure is investigated. The steady measurements are used to provide an acousto-combustion finger print of the combustor. In the unsteady measurements, the flame transfer function is reconstructed from the measured acoustic pressures. These flame transfer functions are compared to transfer functions obtained from a numerical experiment in CFD. Good agreement is obtained

    Experimental Investigation of Thermoacoustics and High-Frequency Combustion Dynamics with Band Stop Characteristics in a Pressurized Combustor

    Get PDF
    In combustor systems, thermoacoustic instabilities may occur and must be avoided for reliable operation. An acoustic network model can be used to predict the eigenfrequencies of the instabilities and the growth rate by incorporating the combustion dynamics with a flame transfer function (FTF). The FTF defines the interconnection between burner aerodynamics and the rate of combustion. In the current study, the method to measure the FTF in a pressurized combustor is explored. A siren unit, mounted in the fuel line, induced a fuel flow excitation of variable amplitude and high maximum frequency. This was performed here for pressurized conditions at 1.5 bar and 3 bar and at a thermal power of 125 kW and 250 kW. In addition to the experimental investigation, a 1-D acoustic network model approach is used. In the model, thermoviscous damping effects and reflection coefficients are incorporated. The model results compare well with experimental data, indicating that the proposed method to determine the FTF is reliable. In the approach, a combination of an FTF with a band stop approach and a network modeling approach was applied. The method provides a good match between experimentally observed behavior and an analytical approach and can be used for instability analysis

    Transient combustion modeling of an oscillating lean premixed methane/air flame

    Get PDF
    The main objective of the present study is to demonstrate accurate low frequency transient turbulent combustion modeling. For accurate flame dynamics some improvements were made to the standard TFC combustion model for lean premixed combustion. With use of a 1D laminar flamelet code, predictions have been made for the laminar flame speed and the critical strain rate to improve the TFC (Turbulent Flame Speed Closure) combustion model. The computational fluid dynamics program CFX is used to perform transient simulations. These results were compared with experimental data of Weigand et al [1]. Two different\ud turbulence models have been used for predictions of the turbulent flow

    LES and acoustic analysis of thermo-acoustic instabilities in a partially premixed model combustor

    Get PDF
    Numerical simulations were performed using Large Eddy Simulation (LES) and acoustic analysis tools to study thermo-acoustic instabilities in an academic burner. The configuration studied corresponds to a methane/air burner installed at the University of Twente (The Netherlands). It operates under fuel-lean partially premixed conditions at atmospheric pressure, and was built to study thermo-acoustic instabilities in conditions representative of gas turbine Lean Premixed systems: gaseous fuel is injected upstream of the combustor and has a limited time to mix with air. Even though the objective is to burn in a premixed mode, the actual regime corresponds to a partially premixed flame where strong equivalence ratio variations are created especially during combustion instabilities. Capturing these modes with LES is a challenge: here, simulations for both stable and unstable regimes are performed. In the unstable case, the limit cycle oscillations (LCO) are characterized and compared to experimental results. Reasonable agreement is found between simulations and experiments

    Ethanol turbulent spray flame response to gas velocity modulation

    Get PDF
    A numerical investigation of the interaction between a spray flame and an acoustic forcing of the velocity field is presented in this paper. In combustion systems, a thermoacoustic instability is the result of a process of coupling between oscillations in heat released and acoustic waves. When liquid fuels are used, the atomisation and the evaporation process also undergo the effects of such instabilities, and the computational fluid dynamics of these complex phenomena becomes a challenging task. In this paper, an acoustic perturbation is applied to the mass flow of the gas phase at the inlet and its effect on the evaporating fuel spray and on the flame front is investigated with unsteady Reynolds averaged Navier-Stokes numerical simulations. Two flames are simulated: a partially premixed ethanol/air spray flame and a premixed pre-vaporised ethanol/air flame, with and without acoustic forcing. The frequencies used to perturb the flames are 200 and 2500 Hz, which are representative for two different regimes. Those regimes are classified based on the Strouhal number St = (D/U)ff: at 200 Hz, St = 0.07, and at 2500 Hz, St = 0.8. The exposure of the flame to a 200 Hz signal results in a stretching of the flame which causes gas field fluctuations, a delay of the evaporation and an increase of the reaction rate. The coupling between the flame and the flow excitation is such that the flame breaks up periodically. At 2500 Hz, the evaporation rate increases but the response of the gas field is weak and the flame is more stable. The presence of droplets does not play a crucial role at 2500 Hz, as shown by a comparison of the discrete flame function in the case of spray and pre-vaporised flame. At low Strouhal number, the forced response of the pre-vaporised flame is much higher compared to that of the spray flame
    corecore