16 research outputs found
Isomer and β-decay spectroscopy of Tz=1 isotopes below the N=Z=50 shell gap
The RISING setup at the GSI-FRS facility was used to investigate the isomer and beta decays in N∼Z∼50 Cd, Ag and Pd isotopes. A preliminary analysis of the data has revealed new results on the Tz=1, 94Pd, 96Ag and 98Cd isotopes. In 94Pd a new high-spin isomer was observed, whilst in 96Ag 3 new isomeric states were identified, including core-excited states. In 98Cd a new high-energy isomeric γ-ray transition is observed, thus enabling us to confirm the previous spin assignment for the core-excited 12+ isomer
Isomer and Beta-decay Spectroscopy of Tz=1 Isotopes Below the N=Z=50 Shell Gap
The RISING setup at the GSI-FRS facility was used to investigate the isomer and beta decays in N~Z~50 Cd, Ag and Pd isotopes. A preliminary analysis of the data has revealed new results on the Tz=1, 94Pd, 96Ag and 98Cd isotopes. In 94Pd a new high-spin isomer was observed, whilst in 96Ag 3 new isomeric states were identified, including core-excited states. In 98Cd a new high-energy isomeric γ-ray transition is observed, thus enabling us to confirm the previous spin assignment for the core-excited 12+ isomer
Observation of a new high-spin isomer in Pd-94
A second gamma-decaying high-spin isomeric state, with a half-life of 197(22) ns, has been identified in the N = Z + 2 nuclide Pd-94 as part of a stopped-beam Rare Isotope Spectroscopic INvestigation at GSI (RISING) experiment. Weisskopf estimates were used to establish a tentative spin/parity of 19(-), corresponding to the maximum possible spin of a negative parity state in the restricted (p(1/2), g(9/2)) model space of empirical shell model calculations. The reproduction of the E3 decay properties of the isomer required an extension of the model space to include the f (5/2) and p(3/2) orbitals using the CD-Bonn potential. This is the first time that such an extension has been required for a high-spin isomer in the vicinity of Sn-100 and reveals the importance of such orbits for understanding the decay properties of high-spin isomers in this region. However, despite the need for the extended model space for the E3 decay, the dominant configuration for the 19(-) state remains (p p(1/2)(-1)g(9/2)(-3))(11)circle times(nu g(9/2)(-2))(8). The half-life of the known, 14(+), isomer was remeasured and yielded a value of 499(13) ns