281 research outputs found

    Cadmium and Mercury in Macrofungi : Mechanisms of Transport and Accumulation

    Get PDF
    This is an electronic version of an article published in Angewandte Botanik: complete citation information for the final version of the paper, as published in the print edition of Angewandte Botanik, is available on the Blackwell Synergy online delivery service, accessible via www.blackwell-synergy.co

    Baryons in Holographic QCD

    Get PDF
    We study the baryon in holographic QCD with D4/D8/D8ˉD4/D8/\bar{D8} multi-DD brane system. In holographic QCD, the baryon appears as a topologically non-trivial chiral soliton in a four-dimensional effective theory of mesons. We call this topological soliton as Brane-induced Skyrmion. Some review of D4/D8/D8ˉD4/D8/\bar{D8} holographic QCD is presented from the viewpoints of recent hadron physics and phenomenologies. Four-dimensional effective theory with pions and ρ\rho mesons is uniquely derived from the non-abelian Dirac-Born-Infeld (DBI) action of D8D8 brane with D4D4 supergravity background, without small amplitude expansion of meson fields to discuss chiral solitons. For the hedgehog configuration of pion and ρ\rho-meson fields, we derive the energy functional and the Euler-Lagrange equation of Brane-induced Skyrmion from the meson effective action induced by holographic QCD. Performing the numerical calculation, we obtain the pion profile F(r)F(r) and the ρ\rho-meson profile G(r)G(r) of the Brane-induced Skyrmion, and estimate its total energy, energy density distribution, and root-mean-square radius. These results are compared with the experimental quantities of baryons and also with the profiles of standard Skyrmion without ρ\rho mesons. We analyze interaction terms of pions and ρ\rho mesons in Brane-induced Skyrmion, and consider the role of ρ\rho-meson component appearing in baryons.Comment: 28 pages, 11 figure

    Brane-induced Skyrmion on S^3: baryonic matter in holographic QCD

    Get PDF
    We study baryonic matter in holographic QCD with D4/D8/\bar{D8} multi-D brane system in type IIA superstring theory. The baryon is described as the "brane-induced Skyrmion", which is a topologically non-trivial chiral soliton in the four-dimensional meson effective action induced by holographic QCD. We employ the "truncated-resonance model" approach for the baryon analysis, including pion and \rho meson fields below the ultraviolet cutoff scale M_KK \sim 1GeV, to keep the holographic duality with QCD. We describe the baryonic matter in large N_c as single brane-induced Skyrmion on the three-dimensional closed manifold S^3 with finite radius R. The interactions between baryons are simulated by the curvature of the closed manifold S^3, and the decrease of the size of S^3 represents the increase of the total baryon-number density in the medium in this modeling. We investigate the energy density, the field configuration, the mass and the root-mean-square radius of single baryon on S^3 as the function of its radius R. We find a new picture of "pion dominance" near the critical density in the baryonic matter, where all the (axial) vector meson fields disappear and only the pion field survive. We also find the "swelling" phenomena of the baryons as the precursor of the deconfinement, and propose the mechanism of the swelling in general context of QCD. The properties of the deconfinement and the chiral symmetry restoration in the baryonic matter are examined by taking the proper order parameters. We also compare our truncated-resonance model with another "instanton" description of the baryon in holographic QCD, considering the role of cutoff scale M_KK.Comment: 25 pages, 12 figure

    Gross-Neveu Models, Nonlinear Dirac Equations, Surfaces and Strings

    Full text link
    Recent studies of the thermodynamic phase diagrams of the Gross-Neveu model (GN2), and its chiral cousin, the NJL2 model, have shown that there are phases with inhomogeneous crystalline condensates. These (static) condensates can be found analytically because the relevant Hartree-Fock and gap equations can be reduced to the nonlinear Schr\"odinger equation, whose deformations are governed by the mKdV and AKNS integrable hierarchies, respectively. Recently, Thies et al have shown that time-dependent Hartree-Fock solutions describing baryon scattering in the massless GN2 model satisfy the Sinh-Gordon equation, and can be mapped directly to classical string solutions in AdS3. Here we propose a geometric perspective for this result, based on the generalized Weierstrass spinor representation for the embedding of 2d surfaces into 3d spaces, which explains why these well-known integrable systems underlie these various Gross-Neveu gap equations, and why there should be a connection to classical string theory solutions. This geometric viewpoint may be useful for higher dimensional models, where the relevant integrable hierarchies include the Davey-Stewartson and Novikov-Veselov systems.Comment: 27 pages, 1 figur

    Long-term effect of mobile phone use on sleep quality: results from the cohort study of mobile phone use and health (COSMOS)

    Get PDF
    BACKGROUND: Effects of radiofrequency electromagnetic field exposure (RF-EMF) from mobile phone use on sleep quality has mainly been investigated in cross-sectional studies. The few previous prospective cohort studies found no or inconsistent associations, but had limited statistical power and short follow-up. In this large prospective cohort study, our aim was to estimate the effect of RF-EMF from mobile phone use on different sleep outcomes. MATERIALS AND METHODS: The study included Swedish (n = 21,049) and Finnish (n = 3120) participants enrolled in the Cohort Study of Mobile Phone Use and Health (COSMOS) with information about operator-recorded mobile phone use at baseline and sleep outcomes both at baseline and at the 4-year follow-up. Sleep disturbance, sleep adequacy, daytime somnolence, sleep latency, and insomnia were assessed using the Medical Outcome Study (MOS) sleep questionnaire. RESULTS: Operator-recorded mobile phone use at baseline was not associated with most of the sleep outcomes. For insomnia, an odds ratio (OR) of 1.24, 95% CI 1.03-1.51 was observed in the highest decile of mobile phone call-time (>258 min/week). With weights assigned to call-time to account for the lower RF-EMF exposure from Universal Mobile Telecommunications Service (UMTS, 3G) than from Global System for Mobile Communications (GSM, 2G) the OR was 1.09 (95% CI 0.89-1.33) in the highest call-time decile. CONCLUSION: Insomnia was slightly more common among mobile phone users in the highest call-time category, but adjustment for the considerably lower RF-EMF exposure from the UMTS than the GSM network suggests that this association is likely due to other factors associated with mobile phone use than RF-EMF. No association was observed for other sleep outcomes. In conclusion, findings from this study do not support the hypothesis that RF-EMF from mobile phone use has long-term effects on sleep quality

    Commentary on the WHO classification of tumors of lymphoid tissues (2008): aggressive B-cell lymphomas

    Get PDF
    In the novel WHO classification 2008, the classification of aggressive B-cell lymphoma has been revised for several categories with the aim to define “clean” entities. Within large B-cell lymphoma, a few distinct clinico-pathological entities have been recognized with more clinically defined entities than pathologically defined ones. The majority of known morphological variations were not considered to merit more than classification as a variant of DLBCL, not otherwise specified. Specifically, a biological subgrouping of DLBCL on the basis of molecular (activated B-cell versus germinal center B-cell) or immunophenotypic (CD5+) features was felt to be too immature to include at this stage. The role of EBV in aggressive B-cell lymphoma has been explored in more depth with the recognition of several novel and re-defined clinico-pathological entities. Also, in these diseases, clinical definitions play a very dominant role in the WHO classification 2008

    An international prospective cohort study of mobile phone users and health (COSMOS): Factors affecting validity of self-reported mobile phone use.

    Get PDF
    This study investigates validity of self-reported mobile phone use in a subset of 75 993 adults from the COSMOS cohort study. Agreement between self-reported and operator-derived mobile call frequency and duration for a 3-month period was assessed using Cohen's weighted Kappa (Îș). Sensitivity and specificity of both self-reported high (≄10 calls/day or ≄4h/week) and low (≀6 calls/week or <30min/week) mobile phone use were calculated, as compared to operator data. For users of one mobile phone, agreement was fair for call frequency (Îș=0.35, 95% CI: 0.35, 0.36) and moderate for call duration (Îș=0.50, 95% CI: 0.49, 0.50). Self-reported low call frequency and duration demonstrated high sensitivity (87% and 76% respectively), but for high call frequency and duration sensitivity was lower (38% and 56% respectively), reflecting a tendency for greater underestimation than overestimation. Validity of self-reported mobile phone use was lower in women, younger age groups and those reporting symptoms during/shortly after using a mobile phone. This study highlights the ongoing value of using self-report data to measure mobile phone use. Furthermore, compared to continuous scale estimates used by previous studies, categorical response options used in COSMOS appear to improve validity considerably, most likely by preventing unrealistically high estimates from being reported

    Universality of Phases in QCD and QCD-like Theories

    Full text link
    We argue that the whole or the part of the phase diagrams of QCD and QCD-like theories should be universal in the large-N_c limit through the orbifold equivalence. The whole phase diagrams, including the chiral phase transitions and the BEC-BCS crossover regions, are identical between SU(N_c) QCD at finite isospin chemical potential and SO(2N_c) and Sp(2N_c) gauge theories at finite baryon chemical potential. Outside the BEC-BCS crossover region in these theories, the phase diagrams are also identical to that of SU(N_c) QCD at finite baryon chemical potential. We give examples of the universality in some solvable cases: (i) QCD and QCD-like theories at asymptotically high density where the controlled weak-coupling calculations are possible, (ii) chiral random matrix theories of different universality classes, which are solvable large-N (large volume) matrix models of QCD. Our results strongly suggest that the chiral phase transition and the QCD critical point at finite baryon chemical potential can be studied using sign-free theories, such as QCD at finite isospin chemical potential, in lattice simulations.Comment: v1: 35 pages, 6 figures; v2: 37 pages, 6 figures, minor improvements, conclusion unchanged; v3: version published in JHE
    • 

    corecore