16 research outputs found

    The Lifestyle of the Segmented Filamentous Bacterium: A Non-Culturable Gut-Associated Immunostimulating Microbe Inferred by Whole-Genome Sequencing

    Get PDF
    Numerous microbes inhabit the mammalian intestinal track and strongly impact host physiology; however, our understanding of this ecosystem remains limited owing to the high complexity of the microbial community and the presence of numerous non-culturable microbes. Segmented filamentous bacteria (SFBs), which are clostridia-related Gram-positive bacteria, are among such non-culturable populations and are well known for their unique morphology and tight attachment to intestinal epithelial cells. Recent studies have revealed that SFBs play crucial roles in the post-natal maturation of gut immune function, especially the induction of Th17 lymphocytes. Here, we report the complete genome sequence of mouse SFBs. The genome, which comprises a single circular chromosome of 1 620 005 bp, lacks genes for the biosynthesis of almost all amino acids, vitamins/cofactors and nucleotides, but contains a full set of genes for sporulation/germination and, unexpectedly, for chemotaxis/flagella-based motility. These findings suggest a triphasic lifestyle of the SFB, which comprises two types of vegetative (swimming and epicellular parasitic) phases and a dormant (spore) phase. Furthermore, SFBs encode four types of flagellin, three of which are recognized by Toll-like receptor 5 and could elicit the innate immune response. Our results reveal the non-culturability, lifestyle and immunostimulation mechanisms of SFBs and provide a genetic basis for the future development of the SFB cultivation and gene-manipulation techniques

    The Wako-Saitô-Muñoz-Eaton Model for Predicting Protein Folding and Dynamics

    No full text
    Despite the recent advances in the prediction of protein structures by deep neutral networks, the elucidation of protein-folding mechanisms remains challenging. A promising theory for describing protein folding is a coarse-grained statistical mechanical model called the Wako-Saitô-Muñoz-Eaton (WSME) model. The model can calculate the free-energy landscapes of proteins based on a three-dimensional structure with low computational complexity, thereby providing a comprehensive understanding of the folding pathways and the structure and stability of the intermediates and transition states involved in the folding reaction. In this review, we summarize previous and recent studies on protein folding and dynamics performed using the WSME model and discuss future challenges and prospects. The WSME model successfully predicted the folding mechanisms of small single-domain proteins and the effects of amino-acid substitutions on protein stability and folding in a manner that was consistent with experimental results. Furthermore, extended versions of the WSME model were applied to predict the folding mechanisms of multi-domain proteins and the conformational changes associated with protein function. Thus, the WSME model may contribute significantly to solving the protein-folding problem and is expected to be useful for predicting protein folding, stability, and dynamics in basic research and in industrial and medical applications

    Successful Treatment of Hepatocellular Carcinoma Complicated by Fanconi Anemia

    No full text
    A 42-year-old woman with liver tumors was referred to our hospital. Her condition was complicated by Fanconi anemia, and she had undergone total laryngectomy 8 years ago. On admission, contrast-enhanced computed tomography revealed hypervascular tumors in the right hepatic lobe. Ultrasound-guided tumor biopsy revealed that the tumor comprised moderately differentiated hepatocellular carcinoma. Although the patient exhibited preserved liver function (Child-Pugh A), complete blood count revealed severe pancytopenia. Eventually, the tumor was successfully treated by transcatheter arterial embolization (TAE). Both platelet transfusion and systemic administration of antibiotics were performed. She was discharged 35 days after TAE

    Treatment of Real-World HCV Genotype 2-Infected Japanese Patients with Sofosbuvir plus Ribavirin

    No full text
    The aim of this study was to characterize the treatment response and tolerability of sofosbuvir plus ribavirin therapies in Japanese patients infected with hepatitis C virus (HCV) genotype (GT)-2. This retrospective study analyzed 114 Japanese HCV GT-2 patients treated for 12 weeks with 400 mg of sofosbuvir plus weight-based ribavirin daily. This treatment led to higher sustained virologic response at 12-weeks post-treatment (SVR12) rates in both treatment-naïve and treatment-experienced patients. The efficacy of this treatment in compensated cirrhotics was the same as that in patients with chronic hepatitis. HCV GT-2a infection and lower estimated glomerular filtration rates (eGFR) tended to be associated with SVR12. Of 114 patients, 113 completed the combination of sofosbuvir plus ribavirin for 12 weeks. Seven patients without SVR12 did not have HCV NS5B-S282 mutations. The overall SVR12 rate was 90.4% (103 of 114). More effective therapeutic options with less adverse events are desired to achieve higher SVR rates in HCV GT-2 Japanese patients
    corecore