12 research outputs found

    Pluggable AOP: Designing Aspect Mechanisms for Third-party Composition

    Full text link
    Studies of Aspect-Oriented Programming (AOP) usually focus on a language in which a specific aspect extension is integrated with a base language. Languages specified in this manner have a fixed, non-extensible AOP functionality. In this paper we consider the more general case of integrating a base language with a set of domain specific third-party aspect extensions for that language. We present a general mixin-based method for implementing aspect extensions in such a way that multiple, independently developed, dynamic aspect extensions can be subject to third-party composition and work collaboratively

    Pluggable AOP: Designing aspect mechanisms for third-party composition

    No full text
    Studies of Aspect-Oriented Programming (AOP) usually focus on a language in which a specific aspect extension is integrated with a base language. Languages specified in this manner have a fixed, non-extensible AOP functionality. This paper argues the need for AOP to support the integration and use of multiple domain-specific aspect extensions together. We study the more general case of integrating a base language with a set of third-party aspect extensions for that language. We present a general mixin-based semantic framework for implementing dynamic aspect extensions in such a way that multiple, independently developed aspect mechanisms can be subject to third-party composition and work collaboratively. Principles governing the design of a collaborative aspect mechanism are aspectual effect exposure and implementation hiding. Categories and Subject Descriptor

    Domain driven web development with WebJinn

    No full text
    Web application development cuts across the HTTP protocol, the client-side presentation language (HTML, XML), the server-side technology (Servlets, JSP, ASP, PHP), and the underlying resource (files, database, information system). Consequently, web develop-ment concerns including functionality, presentation, control, and structure cross-cut, leading to tangled and scattered code that is hard to develop, maintain, and reuse. In this paper we analyze the cause, consequence, and remedy for this crosscutting. We dis-tinguish between intra-crosscutting that results in code tangling and inter-crosscutting that results in code scattering. To resolve inter-crosscutting, we present a new web application development model named XP that introduces extension points as place-holders for structure-dependent code. We present another model named DDD that incorporates XP into the Model-View-Controller (MVC

    General Terms

    No full text
    A plethora of aspect mechanisms exist today. All of these diverse mechanisms integrate concerns into artifacts that exhibit crosscutting structure. What we lack and need is a characterization of the design space that these aspect mechanisms inhabit and a model description of their weaving processes. A good design space representation provides a common framework for understanding and evaluating existing mechanisms. A well-understood model of the weaving process can guide the implementor of new aspect mechanisms. It can guide the designer when mechanisms implementing new kinds of weaving are needed. It can also help teach aspectoriented programming (AOP). In this paper we present and evaluate such a model of the design space for aspect mechanisms and their weaving processes. We model weaving, at an abstract level, as a concern integration process. We derive a weaving process model (WPM) top-down, differentiating a reactive from a nonreactive process. The model provides an in-depth explanation of the key subprocesses used by existing aspect mechanisms
    corecore