246 research outputs found

    Utilization of ground-based digital photography for the evaluation of seasonal changes in the aboveground green biomass and foliage phenology in a grassland ecosystem

    Get PDF
    AbstractWe investigated the usefulness of a ground-based digital photography to evaluate seasonal changes in the aboveground green biomass and foliage phenology in a short-grass grassland in Japan. For ground-truthing purposes, the ecological variables of aboveground green biomass and spectral reflectance of aboveground plant parts were also measured monthly. Seasonal change in a camera-based index (rG: ratio of green channel) reflected the characteristic events of the foliage phenology such as the leaf-flush and leaf senescence. In addition, the seasonal pattern of the rG was similar to that of the aboveground green biomass throughout the year. Moreover, there was a positive linear relationship between rG and aboveground green biomass (R2=0.81, p<0.05), as was the case with spectra-based vegetation indices. On the basis of these results, we conclude that continuous observation using digital cameras is a useful tool that is less labor intensive than conventional methods for estimating aboveground green biomass and monitoring foliage phenology in short-grass grasslands in Japan

    興奮性信号の空間的伝播遅延を用いた任意方向動体検出イメージセンサアーキテクチャ(高機能イメージセンサ)

    Get PDF
    金沢大学大学院自然科学研究科情報システム金沢大学工学部イメージセンサ上に情報処理機能の一部をとりこむVisionChipが広く研究されているが、ロボットビジョンなどで必要な画像の「意味」を抽出しようとするものはほとんどない。本稿では、画像の「意味」を出力とするイメージセンサとして、画像中の動く輝点の速度と方向を出力とするイメージセンサのための新規アーキテクチャの提案とその基礎的な検討を行なう。この輝点の方向検出の際に、画素を格子状に並べる通常の構成で問題となる方向の特異性を解消し、任意方向の検出が可能となるアーキテクチャの提案とその基礎的な検討を行なう。The integration of signal processing circuit in imase sensor, so called \u27Vision Chip\u27 is widely studied, but most of them don\u27t aim at extracting image\u27s meaning, which is often useful for the application of robot vision. In this paper, we propose a novel architecture for image sensor detecting the speed and the direction of moving point on focal plain. This architecture has an possibility to solve the direction dependency problem derived from matrix placement of pixels, and we consider a basic architecture for arbitrarily directional motion detection

    Ginsenoside Rb1 Prevents MPP +

    Get PDF
    Ginsenoside Rb1 shows neuroprotective effects in various neurons, including dopaminergic cells. However, the precise mechanisms of action are uncertain. In this paper, we examine whether Rb1 has a neuroprotective effect on MPP+-induced apoptosis and attempt to clarify the signaling pathway in PC12 cells. Apoptosis of PC12 cells was determined by DNA fragmentation assay, the activation of caspase-3, or by the inactivation of Bcl-xL. Rb1 inhibited MPP+-induced caspase-3 activation and DNA fragmentation and activated Bcl-xL in MPP+-treated PC12 cells. These antiapoptotic effect was abrogated in PC12 cells transfected with estrogen receptor siRNA. Levels of DNA fragmentation were increased by wortmannin or PD 98059, while they were decreased by SB 203580 or SP 600125 in MPP+-treated PC12 cells. Rb1 increased phosphorylation levels of ERK1/2 or Akt in MPP+-treated PC12 cells, while it reduced phosphorylated p38 or SAPK/JNK. The increased phosphorylation of ERK/1/2 or Akt by Rb1 was abrogated by estrogen receptor siRNA. Rb1-induced inhibition of SAPK/JNK or p38 phosphorylation was also abolished by estrogen receptor siRNA. These results suggest that ginsenoside Rb1 protects PC12 cells from caspase-3-dependent apoptosis through stimulation of estrogen receptor with consequent activation of ERK1/2 and Akt and inhibition of SAPK/JNK and p38

    Oxygen and Air Nanobubble Water Solution Promote the Growth of Plants, Fishes, and Mice

    Get PDF
    Nanobubbles (<200 nm in diameter) have several unique properties such as long lifetime in liquid owing to its negatively charged surface, and its high gas solubility into the liquid owing to its high internal pressure. They are used in variety of fields including diagnostic aids and drug delivery, while there are no reports assessing their effects on the growth of lives. Nanobubbles of air or oxygen gas were generated using a nanobubble aerator (BUVITAS; Ligaric Company Limited, Osaka, Japan). Brassica campestris were cultured hydroponically for 4 weeks within air-nanobubble water or within normal water. Sweetfish (for 3 weeks) and rainbow trout (for 6 weeks) were kept either within air-nanobubble water or within normal water. Finally, 5 week-old male DBA1/J mice were bred with normal free-chaw and free-drinking either of oxygen-nanobubble water or of normal water for 12 weeks. Oxygen-nanobubble significantly increased the dissolved oxygen concentration of water as well as concentration/size of nanobubbles which were relatively stable for 70 days. Air-nanobubble water significantly promoted the height (19.1 vs. 16.7 cm; P<0.05), length of leaves (24.4 vs. 22.4 cm; P<0.01), and aerial fresh weight (27.3 vs. 20.3 g; P<0.01) of Brassica campestris compared to normal water. Total weight of sweetfish increased from 3.0 to 6.4 kg in normal water, whereas it increased from 3.0 to 10.2 kg in air-nanobubble water. In addition, total weight of rainbow trout increased from 50.0 to 129.5 kg in normal water, whereas it increased from 50.0 to 148.0 kg in air-nanobubble water. Free oral intake of oxygen-nanobubble water significantly promoted the weight (23.5 vs. 21.8 g; P<0.01) and the length (17.0 vs. 16.1 cm; P<0.001) of mice compared to that of normal water. We have demonstrated for the first time that oxygen and air-nanobubble water may be potentially effective tools for the growth of lives.Ebina K., Shi K., Hirao M., et al. (2013) Oxygen and Air Nanobubble Water Solution Promote the Growth of Plants, Fishes, and Mice. PLoS ONE 8(6): e65339. doi: 10.1371/journal.pone.0065339

    IL-6 negatively regulates osteoblast differentiation through the SHP2/MEK2 and SHP2/Akt2 pathways in vitro

    Full text link
    It has been suggested that interleukin-6 (IL-6) plays a key role in the pathogenesis of rheumatoid arthritis (RA), including osteoporosis not only in inflamed joints but also in the whole body. However, previous in vitro studies regarding the effects of IL-6 on osteoblast differentiation are inconsistent. The aim of this study was to examine the effects and signal transduction of IL-6 on osteoblast differentiation in MC3T3-E1 cells and primary murine calvarial osteoblasts. IL-6 and its soluble receptor significantly reduced alkaline phosphatase (ALP) activity, the expression of osteoblastic genes (Runx2, osterix, and osteocalcin), and mineralization in a dose-dependent manner, which indicates negative effects of IL-6 on osteoblast differentiation. Signal transduction studies demonstrated that IL-6 activated not only two major signaling pathways, SHP2/MEK/ERK and JAK/STAT3, but also the SHP2/PI3K/Akt2 signaling pathway. The negative effect of IL-6 on osteoblast differentiation was restored by inhibition of MEK as well as PI3K, while it was enhanced by inhibition of STAT3. Knockdown of MEK2 and Akt2 transfected with siRNA enhanced ALP activity and gene expression of Runx2. These results indicate that IL-6 negatively regulates osteoblast differentiation through SHP2/MEK2/ERK and SHP2/PI3K/Akt2 pathways, while affecting it positively through JAK/STAT3. Inhibition of MEK2 and Akt2 signaling in osteoblasts might be of potential use in the treatment of osteoporosis in RA. © 2013 The Japanese Society for Bone and Mineral Research and Springer.This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s00774-013-0514-1Kaneshiro S., Ebina K., Shi K., et al. IL-6 negatively regulates osteoblast differentiation through the SHP2/MEK2 and SHP2/Akt2 pathways in vitro. Journal of Bone and Mineral Metabolism 32, 378 (2014); https://doi.org/10.1007/s00774-013-0514-1

    Comparison of the effects of denosumab between a native vitamin D combination and an active vitamin D combination in patients with postmenopausal osteoporosis

    Full text link
    The aim of this 12-month, retrospective study was to compare the effects of denosumab (DMAb; 60 mg subcutaneously every 6 months) plus native vitamin D (VD) (cholecalciferol) combination therapy with DMAb plus active VD analog (alfacalcidol) combination therapy in patients with postmenopausal osteoporosis. Patients [N = 127; mean age 75.6 years (range 58–93 years); 28 treatment-naïve patients, 59 patients treated with oral bisphosphonate therapy, 40 patients treated with teriparatide daily] were allocated to either (1) the DMAb plus native VD group (n = 60; cholecalciferol, 10 μg, plus calcium, 610 mg/day; 13 treatment-naïve patients, 28 patients treated with oral bisphosphonate therapy, and 19 patients treated with teriparatide daily) or (2) the DMAb plus active VD group [n = 67; alfacalcidol, 0.8 ± 0.0 μg, plus calcium, 99.2 ± 8.5 mg/day; 15 treatment-naïve patients, 31 patients treated with oral bisphosphonate therapy, and 21 patients treated with teriparatide daily) on the basis of each physician’s decision. Changes in bone mineral density (BMD), serum bone turnover marker levels, and fracture incidence were monitored every 6 months. There were no significant differences in baseline age, BMD, bone turnover marker levels, and prior treatments between the two groups. After 12 months, compared with the DMAb plus native VD group, the DMAb plus active VD group showed similar increases in the BMD of the lumbar spine (6.4% vs 6.5%) and total hip (3.3% vs 3.4%), but significantly greater increases in the BMD of the femoral neck (1.0% vs 4.9%, P < 0.001) and the distal part of the forearm (third of radius) (−0.8% vs 3.9%, P < 0.01). These tendencies were similar regardless of the differences in the prior treatments. The rates of decrease of bone turnover marker levels were similar for tartrate-resistant acid phosphatase isoform 5b (−49.0% vs −49.0%), procollagen type I N-terminal propeptide (−45.9% vs −49.3%), and undercarboxylated osteocalcin (−56.0 vs −66.5%), whereas serum intact parathyroid hormone levels were significantly lower in the DMAb plus active VD group (47.6 pg/mL vs 30.4 pg/mL, P < 0.001). The rate of hypocalcemia was 1.7% in the DMAb plus native VD group and 1.5% in the DMAb plus active VD group, and the rate of clinical fracture incidence was 8.3% in the DMAb plus native VD group and 4.5% in the DMAb plus active VD group, with no significant difference between the groups. DMAb with active VD combination therapy may be a more effective treatment option than DMAb with native VD combination therapy in terms of increasing BMD of the femoral neck and distal part of the forearm and also maintaining serum intact parathyroid hormone at lower levels.This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s00774-016-0792-5Ebina K., Kashii M., Hirao M., et al. Comparison of the effects of denosumab between a native vitamin D combination and an active vitamin D combination in patients with postmenopausal osteoporosis. Journal of Bone and Mineral Metabolism 35, 571 (2017); https://doi.org/10.1007/s00774-016-0792-5
    corecore