157 research outputs found

    Bare electron dispersion from photoemission experiments

    Full text link
    Performing an in-depth analysis of the photoemission spectra along the nodal direction of the high temperature superconductor Bi-2212 we have developed a procedure to determine the underlying electronic structure and established a precise relation of the measured quantities to the real and imaginary parts of the self-energy of electronic excitations. The self-consistency of the procedure with respect to the Kramers-Kronig transformation allows us to draw conclusions on the applicability of the spectral function analysis and on the existence of well defined quasiparticles along the nodal direction even for the underdoped Bi-2212 in the pseudogap state.Comment: 4 pages 3 figures revtex, corrected misprint

    Change of quasiparticle dispersion in crossing T_c in the underdoped cuprates

    Full text link
    One of the most remarkable properties of the high-temperature superconductors is a pseudogap regime appearing in the underdoped cuprates above the superconducting transition temperature T_c. The pseudogap continously develops out of the superconducting gap. In this paper, we demonstrate by means of a detailed comparison between theory and experiment that the characteristic change of quasiparticle dispersion in crossing T_c in the underdoped cuprates can be understood as being due to phase fluctuations of the superconducting order parameter. In particular, we show that within a phase fluctuation model the characteristic back-turning BCS bands disappear above T_c whereas the gap remains open. Furthermore, the pseudogap rather has a U-shape instead of the characteristic V-shape of a d_{x^2-y^2}-wave pairing symmetry and starts closing from the nodal k=(pi/2,pi/2) directions, whereas it rather fills in at the anti-nodal k=(pi,0) regions, yielding further support to the phase fluctuation scenario.Comment: 6 pages, 4 eps-figure

    Surface properties of SmB6 from x-ray photoelectron spectroscopy

    Full text link
    We have investigated the properties of cleaved SmB6_6 single crystals by x-ray photoelectron spectroscopy. At low temperatures and freshly cleaved samples a surface core level shift is observed which vanishes when the temperature is increased. A Sm valence between 2.5 - 2.6 is derived from the relative intensities of the Sm2+^{2+} and Sm3+^{3+} multiplets. The B/Sm intensity ratio obtained from the core levels is always larger than the stoichiometric value. Possible reasons for this deviation are discussed. The B 1s1s signal shows an unexpected complexity: an anomalous low energy component appears with increasing temperature and is assigned to the formation of a suboxide at the surface. While several interesting intrinsic and extrinsic properties of the SmB6_6 surface are elucidated in this manuscript no clear indication of a trivial mechanism for the prominent surface conductivity is found

    Time-reversal symmetry breaking versus superstructure

    Full text link
    One of the mysteries of modern condenced-matter physics is the nature of the pseudogap state of the superconducting cuprates. Kaminski et al.1 claimed to have observed signatures of time-reversal symmetry breaking in the pseudogap regime in underdoped Bi2Sr2CaCu2O8+d (Bi2212). Here we argue that the observed dichroism is due to the 5x1 superstructure replica of the electronic bands and therefore cannot be considered as evidence for the spontaneous time-reversal symmetry breaking in cuprates.Comment: 5 pages, pd

    Doping dependence of the mass enhancement in (Pb,Bi)_2 Sr_2 Ca Cu_2 O_8 at the antinodal point in the superconducting and normal state

    Full text link
    Angle-resolved photoemission spectroscopy (ARPES) is used to study the mass renormalization of the charge carriers in the high-T_c superconductor (Pb,Bi)_2Sr_2CaCu_2O_8 in the vicinity of the (pi,0) point in the superconducting and the normal state. Using matrix element effects at different photon energies and due to a high momentum and energy resolution the bonding and the antibonding bands could be separated in the whole dopant range. A huge anisotropic coupling to a bosonic collective mode is observed below T_c for both bands in particular for the underdoped case. Above T_c, the more isotropic coupling to a continuum or a mode at much higher energy is significantly weaker.Comment: 4 revtex pages, 4 eps figure

    Evolution of Superconductivity in Electron-Doped Cuprates: Magneto-Raman Spectroscopy

    Full text link
    The electron-doped cuprates Pr_{2-x}Ce_xCuO_4 and Nd_{2-x}Ce_xCuO_4 have been studied by electronic Raman spectroscopy across the entire region of the superconducting (SC) phase diagram. The SC pairing strength is found to be consistent with a weak-coupling regime except in the under-doped region where we observe an in-gap collective mode at 4.5 k_{B}T_c while the maximum amplitude of the SC gap is ~8 k_{B}T_{c}. In the normal state, doped carriers divide into coherent quasi-particles (QPs) and carriers that remain incoherent. The coherent QPs mainly reside in the vicinity of (\pi/2, \pi/2) regions of the Brillouin zone (BZ). We find that only coherent QPs contribute to the superfluid density in the B_{2g} channel. The persistence of SC coherence peaks in the B_{2g} channel for all dopings implies that superconductivity is mainly governed by interactions between the hole-like coherent QPs in the vicinity of (\pi/2, \pi/2) regions of the BZ. We establish that superconductivity in the electron-doped cuprates occurs primarily due to pairing and condensation of hole-like carriers. We have also studied the excitations across the SC gap by Raman spectroscopy as a function of temperature (T) and magnetic field (H) for several different cerium dopings (x). Effective upper critical field lines H*_{c2}(T, x) at which the superfluid stiffness vanishes and H^{2\Delta}_{c2}(T, x) at which the SC gap amplitude is suppressed by field have been determined; H^{2\Delta}_{c2}(T, x) is larger than H*_{c2}(T, x) for all doping concentrations. The difference between the two quantities suggests the presence of phase fluctuations that increase for x< 0.15. It is found that the magnetic field suppresses the magnitude of the SC gap linearly at surprisingly small fields.Comment: 13 pages, 8 figures; submitted to Phys. Rev.
    • …
    corecore